Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer Means Windier on World’s Biggest Lake

17.11.2009
Rising water temperatures are kicking up more powerful winds on Lake Superior, with consequences for currents, biological cycles, pollution and more on the world’s largest lake and its smaller brethren.

Since 1985, surface water temperatures measured by lake buoys have climbed 1.2 degrees per decade, about 15 percent faster than the air above the lake and twice as fast as warming over nearby land.

“The lake’s thermal budget is very sensitive to the amount of ice cover over the winter,” says Ankur Desai, atmospheric and oceanic sciences professor at the University of Wisconsin-Madison. “There is less ice on Lake Superior during the winter, and consequently the water absorbs more heat.”

A wide temperature differential between water and air makes for a more stable atmosphere with calmer winds over the relatively cold water. However, as warming water closes the gap, as in Lake Superior's case, the atmosphere gets more turbulent.

“You get more powerful winds,” Desai says. “We’ve seen a 5 percent increase per decade in average wind speed since 1985.”

Those findings will be published today (Nov. 15) in the journal Nature Geoscience.

Desai, fellow atmospheric and oceanic sciences professor Galen McKinley and graduate research assistant Val Bennington of UW-Madison and physics professor Jay Austin of the University of Minnesota-Duluth used more than 20 years of temperature and wind data collected by three lake buoys and Earth-observing satellites to model Superior’s water and wind system in three dimensions.

“We can look at how the currents are changing based on changes in the wind,” McKinley says. “What we saw was a significant increase in the speed of the currents, nearly 10 percent per decade.”

In theory, that increase in wind and current strength would make for more mixing within the lake and, in turn, a boost in the growth of organisms that make up the earliest links in the food chain.

But Lake Superior’s chlorophyll levels — a measure of the presence of phytoplankton —have been falling. The effect went largely without explanation until the researchers’ modeling showed that the period of temperature stratification (well-defined separation of cold, deep water and warm surface water) was growing alongside surface temperatures and wind and current speed.

“The warming of the lake is counteracting the mixing we would expect,” says McKinley, as the annual period warm water “shoals,” or remains shallow, grows longer by a few days every decade.

A warmer Lake Superior may also have consequences for the movement of airborne pollutants to and from lakeshore communities.

“If you look at an area like Door County, they have issues with pollution in the air, but not the industries that produce it,” Desai said. “What they have is Lake Michigan, which has a weaker temperature differential and higher along-shore wind speeds that bring in air from industrialized areas.”

Changes in the lake winds may also play out over neighboring land, Desai says, possibly in the way Superior drives fall’s lake-effect snowstorms.

Lake Superior may be the anchor for a chain of lakes that hold one-fifth of the world’s fresh surface water, but the impact of steadily rising temperatures has been poorly understood, according to Desai.

“Large lakes are very interesting,” he says. “They behave sometimes like an ocean and sometimes like a small lakes, but they’re not studied as much as either.”

That may change with the arrival of more than half a billion dollars promised by the federal government to Great Lakes programs. McKinley sees the group’s continuing research as vital to a reasoned approach to mitigating the effects of pollution and invasive species.

“We have more to do,” McKinley says, pointing to Austin’s mooring of underwater instruments and the researchers’ continuing assessment of the carbon cycling in and out of Lake Superior as part of a four-year grant funded by the National Science Foundation.

“The new federal money is good, but it can’t only be for remediation,” she says. There’s got to be some of that science to understand how these lakes work.”

CONTACT:
Ankur Desai, 608-265-9201, desai@aos.wisc.edu;
Galen McKinley, 608-262-4817, gamckinley@wisc.edu

Chris Barncard | Newswise Science News
Further information:
http://www.wisc.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>