Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer climate not the cause of oxygen deficiency in the Baltic Sea

12.10.2009
Oxygen deficiency in the Baltic Sea has never been greater than it is now.

But it is not an effect of climate change but rather of increased inputs of nutrients and fertilisers. This is the finding of researchers at the University of Gothenburg, Sweden, who have analysed the ocean climate of the Baltic Sea since the 16th century.

85 million people live in the drainage basin of the Baltic Sea. This population has a great impact on the marine environment of the Baltic. This is shown by the researcher Daniel Hansson at the Department of Earth Sciences, who has analysed the ocean climate of the Baltic Sea since the 16th century using new methods.

Human activity

In his thesis, Hansson notes that oxygen deficiency and spread of dead seabeds in the Baltic Sea are essentially due to human activity.

"Climate change to date has only had a negligible effect on oxygen deficiency in the Baltic Sea. The principal cause of oxygen deficiency and large areas of dead seabed is that inputs from agriculture and untreated wastewater increased sharply, in particular in conjunction with increased use of commercial fertiliser in the mid-20th century," says Hansson.

New methods

By combining new methods to reconstruct the historical climate and modern computer models, Hansson has been able to study in detail changes in water temperature, ice extent, river runoff, salinity and oxygen concentrations in the Baltic Sea over 500 years. The studies show clearly that the oxygen condition today cannot be compared with any other period since the 16th century, and that the present-day raised water temperature and limited ice extent are similar to situations that have occurred only twice previously.

Changes can come

"But if the trend towards continued warming persists, we may soon see climate change outside the variation that has occurred in the past 500 years," says Hansson.

The technique used in the thesis provides very high time resolution. Hansson has, for example, been able to reconstruct how the ice thickened during the turbulent days of January and February 1658, when King Charles X Gustav marched with the Swedish Army across the Little and Great Belt, leading to the annexation of Blekinge, Skåne, Halland and Bohuslän by Sweden.

The thesis Ocean climate variability over recent centuries explored by modelling the Baltic Sea was publicly defended on 25 September.

Link to thesis: http://gupea.ub.gu.se/dspace/handle/2077/20827

Contact:
Daniel Hansson, Department of Earth Sciences, University of Gothenburg
Telephone: 46 31-786 2878
Mobile: 46 706-840481
daniel.hansson@gvc.gu.se
Press information: Krister Svahn
krister.svahn@science.gu.se
+46 31-7864 912

Helena Aaberg | idw
Further information:
http://gupea.ub.gu.se/dspace/handle/2077/20827
http://www.gu.se

More articles from Earth Sciences:

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

nachricht Collapse of the European ice sheet caused chaos
27.06.2017 | CAGE - Center for Arctic Gas Hydrate, Climate and Environment

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>