Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm sea water is melting Antarctic glaciers

06.12.2012
The ice sheet in West Antarctica is melting faster than expected.
New observations published by oceanographers from the University of Gothenburg and the US may improve our ability to predict future changes in ice sheet mass. The study was recently published in the journal Nature Geoscience.

A reduction in the inland ice in the Antarctic and on Greenland will affect the water levels of the world’s oceans.
It is therefore problematic that we currently have insufficient knowledge about the ocean circulation near large glaciers in West Antarctica. This means that researchers cannot predict how water levels will change in future with any degree of certainty.

“There is a clear reduction in the ice mass in West Antarctica, especially around the glaciers leading into the Amundsen Sea,” says researcher Lars Arneborg from the Department of Earth Sciences at the University of Gothenburg.

Together with his research colleagues Anna Wåhlin, Göran Björk and Bengt Liljebladh, he has studied the ocean circulation in the Amundsen Sea.

One reason why West Antarctica is particularly sensitive is that the majority of the ice rests on areas that are below sea level. Warm sea water penetrates beneath the ice, causing increased melting from underneath.

“It is therefore probably a change in the ocean circulation in the Amundsen Sea that has caused this increased melting,” continues Arneborg.

Until now, researchers have been referred to studies that use high-resolution computer models.

“But there have been very few oceanographic measurements from the Amundsen Sea to confirm or contradict the results from the computer models. Nor has there been any winter data. Sea ice and icebergs have made it impossible to get there in the winter, and it isn’t easy to have instruments in place all year round.”

However, since 2010 the researchers from Gothenburg have managed to have instruments positioned in the Amundsen Sea, enabling them to measure the inward flow of warm sea water against the glaciers.
The observations show that the warm sea water flows in against the glaciers in an even stream all year round, in contrast to the model results which suggested a strong annual cycle.

“This shows just how important observations are for investigating whether the models we use describe something that resembles reality. Warm ocean currents have caused much more melting than any model has predicted, both in West Antarctica and around Greenland.

The researchers want more and longer time series of observations in order to improve the models and achieve a better understanding.

“Only then will we be able to say anything about how the ice masses of the Antarctic and Greenland will change in the future.”

Contact:
Lars Arneborg, Department of Earth Sciences
Tel.: +46 (0)31 786 2886, e-mail: laar@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Earth Sciences:

nachricht New insights into the ancestors of all complex life
29.05.2017 | University of Bristol

nachricht A 3-D look at the 2015 El Niño
29.05.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

New insights into the ancestors of all complex life

29.05.2017 | Earth Sciences

New photocatalyst speeds up the conversion of carbon dioxide into chemical resources

29.05.2017 | Life Sciences

NASA's SDO sees partial eclipse in space

29.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>