Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm sea water is melting Antarctic glaciers

06.12.2012
The ice sheet in West Antarctica is melting faster than expected.
New observations published by oceanographers from the University of Gothenburg and the US may improve our ability to predict future changes in ice sheet mass. The study was recently published in the journal Nature Geoscience.

A reduction in the inland ice in the Antarctic and on Greenland will affect the water levels of the world’s oceans.
It is therefore problematic that we currently have insufficient knowledge about the ocean circulation near large glaciers in West Antarctica. This means that researchers cannot predict how water levels will change in future with any degree of certainty.

“There is a clear reduction in the ice mass in West Antarctica, especially around the glaciers leading into the Amundsen Sea,” says researcher Lars Arneborg from the Department of Earth Sciences at the University of Gothenburg.

Together with his research colleagues Anna Wåhlin, Göran Björk and Bengt Liljebladh, he has studied the ocean circulation in the Amundsen Sea.

One reason why West Antarctica is particularly sensitive is that the majority of the ice rests on areas that are below sea level. Warm sea water penetrates beneath the ice, causing increased melting from underneath.

“It is therefore probably a change in the ocean circulation in the Amundsen Sea that has caused this increased melting,” continues Arneborg.

Until now, researchers have been referred to studies that use high-resolution computer models.

“But there have been very few oceanographic measurements from the Amundsen Sea to confirm or contradict the results from the computer models. Nor has there been any winter data. Sea ice and icebergs have made it impossible to get there in the winter, and it isn’t easy to have instruments in place all year round.”

However, since 2010 the researchers from Gothenburg have managed to have instruments positioned in the Amundsen Sea, enabling them to measure the inward flow of warm sea water against the glaciers.
The observations show that the warm sea water flows in against the glaciers in an even stream all year round, in contrast to the model results which suggested a strong annual cycle.

“This shows just how important observations are for investigating whether the models we use describe something that resembles reality. Warm ocean currents have caused much more melting than any model has predicted, both in West Antarctica and around Greenland.

The researchers want more and longer time series of observations in order to improve the models and achieve a better understanding.

“Only then will we be able to say anything about how the ice masses of the Antarctic and Greenland will change in the future.”

Contact:
Lars Arneborg, Department of Earth Sciences
Tel.: +46 (0)31 786 2886, e-mail: laar@gvc.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>