Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm Ocean Rapidly Melting Antarctic Ice Shelf from Below

16.09.2013
For five years, a scientific expedition tried reaching Pine Island Glacier ice shelf in a remote, wind-ridden corner of Antarctica. The obstacles to get to the ice shelf were extreme, but the science goal was simple: to measure how fast the sea was melting the 37-mile long ice tongue from underneath by drilling through the ice shelf.

The international team, led by NASA's emeritus glaciologist Robert Bindschadler and funded by the National Science Foundation and NASA, had to abort their mission in 2007 due to logistical challenges after becoming the first people to ever land on the ice shelf.


Drilling station and remote field camp on the Pine Island Glacier in 2012. Image Credit: Salvatore Consalvi

On their next try, in 2011, bad weather prevented the scientists from reaching the ice shelf until it was too late in the field season to carry out their science. It wasn't until December 2012 that the team was finally able to install scientific instruments.

Those measurements taken on and below the Pine Island Glacier ice shelf have yielded their first scientific results, determining the rate at which warm sea water is eating away the ice from underneath the floating portion of the glacier.

In a paper published in the journal Science on Sept. 13, the team describes how at one of their study sites, halfway down the ice shelf, the melt rate was as high as 2.36 inches (6 centimeters) per day.

"This is the first observation of the actual melt rate underneath the ice shelf," said Timothy Stanton, an oceanographer at the Naval Postgraduate School in Monterey, Calif., and lead author of the paper. "We have observations using remote sensing of various kinds, but these are actual in situ measurements."

The measurements also detected differences in melt rates across the channel system that runs underneath the ice shelf, Stanton said. Such features are important for adjusting models so they can accurately predict ice melt and its contribution to sea level rise.

“Our direct measurements are consistent with the larger scale averages that remote sensing data have provided, but our data capture an enormous fine scale variability of the basal melting rate that remote sensing can't resolve,” Bindschadler said. “Using only the average melt rates would not lead to a correct understanding of the actual ocean-ice interaction processes taking place in the boundary layer.”

Ice shelves buttress seaward glaciers, slowing the speed at which these rivers of ice dump their contents into the sea. If an ice shelf is weakened at its grounding line, the point where the glacier loses its grip on the land and starts floating, it allows the ice to flow faster, which impacts sea level. Pine Island Glacier and its neighbor, Thwaites Glacier, drain a large fraction of the West Antarctic ice shelf and are of great importance to its stability.

Research shows that melting of the underside of Antarctic ice shelves is ultimately driven by changes in the southernmost atmospheric circulation. Strong westerly winds push the frigid top water layer of the Southern Ocean away from land, which allows deeper, warmer water to raise and spill over the border of the Antarctic continental shelf. Since the weight of land ice tilts the continental shelf inland, streams of warm water can travel all the way to the ice shelf's grounding line, where they melt the ice. The resulting warm, fresh melt water rises against the underside of the ice shelf along the length of the ice shelf and carves melt channels that look like inverted river valleys.

To study the melt rates within these channels and observe the ocean cavity beneath the ice shelf, the team set up three study sites on the ice shelf during December 2012 and January 2013. All three camps, named Drill A, B and C, were in the middle of the ice shelf, to avoid the sides and the grounding line -- all of them heavily crevassed areas.

At the three campsites, the researchers used a hot-water drill to penetrate the 1,460-foot (450-meter) thick ice shelf. They then lowered through the holes a suite of oceanographic instruments, developed by Stanton, to measure the physical properties of the seawater beneath. At each drill site, a rigid pole allowed to refreeze in the lower ice shelf suspended a set of instruments about 6 feet (2 meters) below the ice-shelf base. The team also deployed at each site profiling instruments and a deep temperature and salinity instrument designed to repeatedly scan the deeper waters, although mechanical and hydraulic problems greatly limited data yield from the profilers.

Researchers use the data from these two instrument packages under the ice shelf to measure the basal melt in two different ways. First, an upward-facing altimeter records the retreat of the ice from the instrument. Second, an ocean turbulence instrument measures very small fluctuations in temperature, salinity and vertical current right below the ice. Researchers then use these three parameters to study changes in the vertical transport in the water column due to melt, which in turn lets them calculate the local ice melt rate.

On the ice shelf, scientists left high-resolution radars at different sites for 24 hours, and measured how the sea-ice interface, or the point where water touches the ice shelf's underbelly, moved as the ice melted.

The radar and oceanographic measurements translated into very similar melt rates: 2.36 inches (6 centimeters) per day, or about 72 feet (22 meters) per year in the middle of the channels, and almost non-existent at their flanks. The authors calculate that melting at the grounding line possibly doubles that higher rate. This would agree with previous estimates of basal melt made by a team led by Eric Rignot, jointly of NASA's Jet Propulsion Laboratory in Pasadena, Calif., and the University of California, Irvine. In 2002, Rignot's group used satellite radar data and calculated that the warm marine waters were melting Pine Island Glacier's ice shelf at around 144 feet (44 meters) per year at its grounding line.

For decades, Pine Island Glacier was considered too dangerous and remote to explore, despite its scientific interest. But a careful study of satellite imagery by Bindschadler identified an area where planes could land safely.

"The success of this project shows the strength of marrying satellite data with field data," Bindschadler said. "The satellite data told us where to go, helped guide us and it told us in broad brush strokes that this part of West Antarctica was changing a lot. But field work was the only way to get these measurements underneath the ice shelf; satellites couldn't do that for us."

"In my 35 years doing fairly large oceanographic projects, the Pine Island Glacier one tops it in terms of its complexity and challenge," Stanton said. "But it's clear that it's very important to understand how these massive ice shelves are influenced by changes in the ocean. These observations will provide the basis for improving global climate models."

Maria-José Viñas
NASA's Earth Science News Team

Maria-José Viñas | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/content/goddard/warm-ocean-rapidly-melting-antarctic-ice-shelf-from-below/#.UjNz0XfjPZU

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>