Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warm ocean drives most Antarctic ice shelf loss, UC Irvine and others show

14.06.2013
Findings are a game changer for future forecasts about thawing continent

Ocean waters melting the undersides of Antarctic ice shelves, not icebergs calving into the sea, are responsible for most of the continent's ice loss, a study by UC Irvine and others has found.

The first comprehensive survey of all Antarctic ice shelves discovered that basal melt, or ice dissolving from underneath, accounted for 55 percent of shelf loss from 2003 to 2008 – a rate much higher than previously thought. Ice shelves, floating extensions of glaciers, fringe 75 percent of the vast, frozen continent.

The findings, to be published in the June 14 issue of Science, will help scientists improve projections of how Antarctica, which holds about 60 percent of the planet's freshwater locked in its massive ice sheet, will respond to a warming ocean and contribute to sea level rise.

It turns out that the tug of seawaters just above the freezing point matters more than the breaking off of bergs.

"We find that iceberg calving is not the dominant process of ice removal. In fact, ice shelves mostly melt from the bottom before they even form icebergs," said lead author Eric Rignot, a UC Irvine professor who's also a researcher with NASA's Jet Propulsion Laboratory in Pasadena. "This has profound implications for our understanding of interactions between Antarctica and climate change. It basically puts the Southern Ocean up front as the most significant control on the evolution of the polar ice sheet."

Ice shelves grow through a combination of land ice flowing to the sea and snow falling on their surfaces. The researchers combined a regional snow accumulation model and a new map of Antarctica's bedrock with ice shelf thickness, elevation and velocity data captured by Operation IceBridge – an ongoing NASA aerial survey of Greenland and the South Pole. (Rignot will host a planning session of Operation IceBridge scientists at UC Irvine on June 17 and 18.)

Ocean melting is distributed unevenly around the continent. The three giant ice shelves of Ross, Filchner and Ronne, which make up two-thirds of Antarctica's ice shelves, accounted for only 15 percent. Meanwhile, less than a dozen small ice shelves floating on relatively warm waters produced half the total meltwater during the same period.

The researchers also compared the rates at which the ice shelves are shedding ice with the speed at which the continent itself is losing mass and found that, on average, the shelves lost mass twice as fast as the Antarctic ice sheet did.

"Ice shelf melt can be compensated by ice flow from the continent," Rignot said. "But in a number of places around Antarctica, they are melting too fast, and as a consequence, glaciers and the entire continent are changing."

Other authors are Jeremie Mouginot and Bernd Scheuchl of UC Irvine and Stanley Jacobs of Columbia University. Funding was provided by NASA, the National Science Foundation, and the National Oceanic & Atmospheric Administration.

About the University of California, Irvine:

Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with more than 28,000 undergraduate and graduate students, 1,100 faculty and 9,400 staff. Orange County's second-largest employer, UCI contributes an annual economic impact of $4.3 billion. For more UCI news, visit news.uci.edu.

News Radio:

UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Contact:

Janet Wilson

UCI maintains an online directory of faculty available as experts to the media. To access, visit http://www.today.uci.edu/experts

Janet Wilson | EurekAlert!
Further information:
http://www.uci.edu

More articles from Earth Sciences:

nachricht Climate satellite: Tracking methane with robust laser technology
22.06.2017 | Fraunhofer-Gesellschaft

nachricht How reliable are shells as climate archives?
21.06.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>