Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic plumbing provides clues on eruptions and earthquakes

13.04.2012
Two new studies into the "plumbing systems" that lie under volcanoes could bring scientists closer to understanding plate ruptures and predicting eruptions—both of which are important steps for protecting the public from earthquake and volcanic hazards.

International teams of researchers, including two scientists from the University of Rochester, have been studying the location and behaviour of magma chambers on the Earth's mid-ocean ridge system—a vast chain of volcanoes along which the Earth forms new crust.

They worked in the tropical region of Afar, Ethiopia and the subarctic country of Iceland—the only places where mid-ocean ridges appear above sea level. Volcanic ridges (or "spreading centers") occur when tectonic plates "rift" or pull apart. This happens when magma (hot molten rock) injects itself into weaknesses in the brittle upper crust, erupting as lava and forming new crust upon cooling.

"These conclusions would not have been possible without the multi-disciplinary expertise of the researchers taking part in these studies," said Cynthia Ebinger, professor of geophysics at the University of Rochester.

The studies, published in Nature Geoscience, reveal new information about where magma is stored and how it moves through the geological plumbing network.

Magma chambers work like plumbing systems, channelling pressurized magma through networks of underground "pipes." Finding out where magma chambers lie and how they behave could help identify early warning signs of impending eruptions, according to the researchers.

By analyzing images taken by the European Space Agency satellite Envisat, scientists were able to measure how the ground moved before, during, and after eruptions. Also, Ebinger and Manahloh Belachew, also from the University of Rochester, operated an array of seismographs that provided the depth and detailed time control to gauge the fracturing of the earth and the flow of magma from multiple eruptions in Afar. Using these data, the international team built and tested computer models to find out how rifting occurs.

The team of scientists discovered that the ground started "uplifting" (elevating) four months before the eruption, due to new magma increasing pressure in one of the underground chambers. They hope the ground movement will prove to be precursory signals that are fundamental to predicting eruptions.

In an extensive study of eruptions in Afar and Iceland—two vastly different environments—Ebinger and Belachew found remarkable similarities, with many events occurring within a short space of time. They identified multiple magma chambers positioned horizontally and vertically, allowing magma to shoot in several directions. Earthquake patterns were used to track the migrating magma as it inflated cracks, and to map the rupture of faults above the miles of propagating magma injection zones. The combined data sets show that separate magma chambers fed single eruptions.

A sequence of eruptions in Afar from 2005 to the present is part of an unusual period of volcanic unrest in Ethiopia, and is enabling scientists to learn more about magma plumbing systems at spreading centers. Most spreading centers are about a mile under water at the bottom of the ocean, making detailed observations extremely challenging.

"Our studies in Ethiopia open the door to new discoveries of multi-tiered magma chambers along submerged mid-ocean ridges worldwide," said Ebinger. "We also found that magma movement and faulting during intense episodes create much of the characteristic rift valley topography, where narrow lowlands are found between mountain ranges."

When magma intrudes into a region it generates earthquakes, according to Belachew, a Ph.D. candidate. "The detailed relations of the earthquake sequences in both time and space allow us to track the movement of magma and associated fault rupture with unprecedented detail," he said.

Tim Wright, from the University of Leeds' School of Earth and Environment, heads the international Afar Rift Consortium. "The dramatic events we have been witnessing in Afar in the past six years are transforming our understanding of how the crust grows when tectonic plates pull apart," said Wright. "Our work in one of the hottest places on Earth is having a direct impact on our understanding of eruptions from the frozen volcanoes of Iceland."

The studies were funded by the UK Natural Environment Research Council through the Afar Rift Consortium, the National Centre for Earth Observation, the US National Science Foundation, the UK Royal Society, and the Icelandic Research Fund. Seismic instrumentation was provided by IRIS-PASSCAL and Seis-UK; GPS instrumentation by UNAVCO.

Peter Iglinski | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Earth Sciences:

nachricht Water cooling for the Earth's crust
22.11.2017 | Helmholtz Centre for Ocean Research Kiel (GEOMAR)

nachricht Retreating permafrost coasts threaten the fragile Arctic environment
22.11.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>