Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic plumbing provides clues on eruptions and earthquakes

13.04.2012
Two new studies into the "plumbing systems" that lie under volcanoes could bring scientists closer to understanding plate ruptures and predicting eruptions—both of which are important steps for protecting the public from earthquake and volcanic hazards.

International teams of researchers, including two scientists from the University of Rochester, have been studying the location and behaviour of magma chambers on the Earth's mid-ocean ridge system—a vast chain of volcanoes along which the Earth forms new crust.

They worked in the tropical region of Afar, Ethiopia and the subarctic country of Iceland—the only places where mid-ocean ridges appear above sea level. Volcanic ridges (or "spreading centers") occur when tectonic plates "rift" or pull apart. This happens when magma (hot molten rock) injects itself into weaknesses in the brittle upper crust, erupting as lava and forming new crust upon cooling.

"These conclusions would not have been possible without the multi-disciplinary expertise of the researchers taking part in these studies," said Cynthia Ebinger, professor of geophysics at the University of Rochester.

The studies, published in Nature Geoscience, reveal new information about where magma is stored and how it moves through the geological plumbing network.

Magma chambers work like plumbing systems, channelling pressurized magma through networks of underground "pipes." Finding out where magma chambers lie and how they behave could help identify early warning signs of impending eruptions, according to the researchers.

By analyzing images taken by the European Space Agency satellite Envisat, scientists were able to measure how the ground moved before, during, and after eruptions. Also, Ebinger and Manahloh Belachew, also from the University of Rochester, operated an array of seismographs that provided the depth and detailed time control to gauge the fracturing of the earth and the flow of magma from multiple eruptions in Afar. Using these data, the international team built and tested computer models to find out how rifting occurs.

The team of scientists discovered that the ground started "uplifting" (elevating) four months before the eruption, due to new magma increasing pressure in one of the underground chambers. They hope the ground movement will prove to be precursory signals that are fundamental to predicting eruptions.

In an extensive study of eruptions in Afar and Iceland—two vastly different environments—Ebinger and Belachew found remarkable similarities, with many events occurring within a short space of time. They identified multiple magma chambers positioned horizontally and vertically, allowing magma to shoot in several directions. Earthquake patterns were used to track the migrating magma as it inflated cracks, and to map the rupture of faults above the miles of propagating magma injection zones. The combined data sets show that separate magma chambers fed single eruptions.

A sequence of eruptions in Afar from 2005 to the present is part of an unusual period of volcanic unrest in Ethiopia, and is enabling scientists to learn more about magma plumbing systems at spreading centers. Most spreading centers are about a mile under water at the bottom of the ocean, making detailed observations extremely challenging.

"Our studies in Ethiopia open the door to new discoveries of multi-tiered magma chambers along submerged mid-ocean ridges worldwide," said Ebinger. "We also found that magma movement and faulting during intense episodes create much of the characteristic rift valley topography, where narrow lowlands are found between mountain ranges."

When magma intrudes into a region it generates earthquakes, according to Belachew, a Ph.D. candidate. "The detailed relations of the earthquake sequences in both time and space allow us to track the movement of magma and associated fault rupture with unprecedented detail," he said.

Tim Wright, from the University of Leeds' School of Earth and Environment, heads the international Afar Rift Consortium. "The dramatic events we have been witnessing in Afar in the past six years are transforming our understanding of how the crust grows when tectonic plates pull apart," said Wright. "Our work in one of the hottest places on Earth is having a direct impact on our understanding of eruptions from the frozen volcanoes of Iceland."

The studies were funded by the UK Natural Environment Research Council through the Afar Rift Consortium, the National Centre for Earth Observation, the US National Science Foundation, the UK Royal Society, and the Icelandic Research Fund. Seismic instrumentation was provided by IRIS-PASSCAL and Seis-UK; GPS instrumentation by UNAVCO.

Peter Iglinski | EurekAlert!
Further information:
http://www.rochester.edu

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>