Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Volcanic plumbing provides clues on eruptions and earthquakes

Two new studies into the "plumbing systems" that lie under volcanoes could bring scientists closer to understanding plate ruptures and predicting eruptions—both of which are important steps for protecting the public from earthquake and volcanic hazards.

International teams of researchers, including two scientists from the University of Rochester, have been studying the location and behaviour of magma chambers on the Earth's mid-ocean ridge system—a vast chain of volcanoes along which the Earth forms new crust.

They worked in the tropical region of Afar, Ethiopia and the subarctic country of Iceland—the only places where mid-ocean ridges appear above sea level. Volcanic ridges (or "spreading centers") occur when tectonic plates "rift" or pull apart. This happens when magma (hot molten rock) injects itself into weaknesses in the brittle upper crust, erupting as lava and forming new crust upon cooling.

"These conclusions would not have been possible without the multi-disciplinary expertise of the researchers taking part in these studies," said Cynthia Ebinger, professor of geophysics at the University of Rochester.

The studies, published in Nature Geoscience, reveal new information about where magma is stored and how it moves through the geological plumbing network.

Magma chambers work like plumbing systems, channelling pressurized magma through networks of underground "pipes." Finding out where magma chambers lie and how they behave could help identify early warning signs of impending eruptions, according to the researchers.

By analyzing images taken by the European Space Agency satellite Envisat, scientists were able to measure how the ground moved before, during, and after eruptions. Also, Ebinger and Manahloh Belachew, also from the University of Rochester, operated an array of seismographs that provided the depth and detailed time control to gauge the fracturing of the earth and the flow of magma from multiple eruptions in Afar. Using these data, the international team built and tested computer models to find out how rifting occurs.

The team of scientists discovered that the ground started "uplifting" (elevating) four months before the eruption, due to new magma increasing pressure in one of the underground chambers. They hope the ground movement will prove to be precursory signals that are fundamental to predicting eruptions.

In an extensive study of eruptions in Afar and Iceland—two vastly different environments—Ebinger and Belachew found remarkable similarities, with many events occurring within a short space of time. They identified multiple magma chambers positioned horizontally and vertically, allowing magma to shoot in several directions. Earthquake patterns were used to track the migrating magma as it inflated cracks, and to map the rupture of faults above the miles of propagating magma injection zones. The combined data sets show that separate magma chambers fed single eruptions.

A sequence of eruptions in Afar from 2005 to the present is part of an unusual period of volcanic unrest in Ethiopia, and is enabling scientists to learn more about magma plumbing systems at spreading centers. Most spreading centers are about a mile under water at the bottom of the ocean, making detailed observations extremely challenging.

"Our studies in Ethiopia open the door to new discoveries of multi-tiered magma chambers along submerged mid-ocean ridges worldwide," said Ebinger. "We also found that magma movement and faulting during intense episodes create much of the characteristic rift valley topography, where narrow lowlands are found between mountain ranges."

When magma intrudes into a region it generates earthquakes, according to Belachew, a Ph.D. candidate. "The detailed relations of the earthquake sequences in both time and space allow us to track the movement of magma and associated fault rupture with unprecedented detail," he said.

Tim Wright, from the University of Leeds' School of Earth and Environment, heads the international Afar Rift Consortium. "The dramatic events we have been witnessing in Afar in the past six years are transforming our understanding of how the crust grows when tectonic plates pull apart," said Wright. "Our work in one of the hottest places on Earth is having a direct impact on our understanding of eruptions from the frozen volcanoes of Iceland."

The studies were funded by the UK Natural Environment Research Council through the Afar Rift Consortium, the National Centre for Earth Observation, the US National Science Foundation, the UK Royal Society, and the Icelandic Research Fund. Seismic instrumentation was provided by IRIS-PASSCAL and Seis-UK; GPS instrumentation by UNAVCO.

Peter Iglinski | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>