Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Volcanic Ash Research Shows How Plumes End up in the Jet Stream

20.04.2010
New techniques under development could provide better tracking of volcanic plumes

A University at Buffalo volcanologist, an expert in volcanic ash cloud transport, published a paper recently showing how the jet stream – the area in the atmosphere that pilots prefer to fly in – also seems to be the area most likely to be impacted by plumes from volcanic ash.

"That's a problem," says Marcus I. Bursik, PhD, one of the foremost experts on volcanic plumes and their effect on aviation safety, "because modern transcontinental and transoceanic air routes are configured to take advantage of the jet stream's power, saving both time and fuel.

"The interaction of the jet stream and the plume is likely a factor here," says Bursik, professor of geology in the UB College of Arts and Sciences. "Basically, planes have to fly around the plume or just stop flying, as they have, as the result of this eruption in Iceland."

In some cases, if the plume can be tracked well enough with satellites, pilots can steer around the plume, he notes, but that didn't work in this case because the ash drifted right over Britain.

Bursik participated in the first meetings in the early 1990s between volcanologists and the aviation industry to develop methods to ensure safe air travel in the event of volcanic eruptions. He and colleagues authored a 2009 paper called "Volcanic plumes and wind: Jet stream interaction examples and implications for air traffic" in the Journal of Volcanology and Geothermal Research.

"In the research we did, we found that the jet stream essentially stops the plume from rising higher into the atmosphere," he says. "Because the jet stream causes the density of the plume to drop so fast, the plume's ability to rise above the jet stream is halted: the jet stream caps the plume at a certain atmospheric level."

Bursik says that new techniques now in development will be capable of producing better estimates of where and when ash clouds from volcanoes will travel.

He and his colleagues have proposed a project with researchers at the University of Alaska that would improve tracking estimates to find out where volcanic ash clouds are going.

"What we get now is a mean estimate of where ash should be in atmosphere," says Bursik, "but our proposal is designed to develop both the mean estimate and estimates of error that would be more accurate and useful. It could help develop scenarios that would provide a quantitative probability as to how likely a plane is to fly through the plume, depending on the route."

Bursik also is working with other researchers at UB, led by UB geology professor Greg Valentine, on a project called VHub, a 'cyber infrastructure for collaborative volcano research and mitigation.'

VHUB would speed the transfer of new tools developed by volcanologists to the government agencies charged with protecting the public from the hazards of volcanic eruptions. That international project, which Valentine heads up at UB, with researchers at Michigan Technological University and the University of South Florida, was funded recently by the National Science Foundation.

Bursik's co-authors on the jet stream paper are Shannon E. Kobs and Aaron Burns, both former UB graduate students in geology, L.I. Bazanova and I.V. Melekestves, of the Russian Academy of Sciences, A. Kurbatov of the University of Maine, Orono, and D.C. Pieri of the Jet Propulsion Laboratory at California Institute of Technology.

The research was funded by NSF, the National Aeronautics and Space Administration and California Institute of Technology and Science Applications International Corp.

Bursik and Valentine are members of the UB Center for GeoHazards Studies at http://www.geohazards.buffalo.edu, which is supporting the UB2020 goals in Extreme Events.

Ellen Goldbaum | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Earth Sciences:

nachricht International team reports ocean acidification spreading rapidly in Arctic Ocean
28.02.2017 | University of Delaware

nachricht Secrets of the calcerous ooze revealed
28.02.2017 | Washington University in St. Louis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Light-emitting bubbles captured in the wild

28.02.2017 | Physics and Astronomy

Triboelectric nanogenerators boost mass spectrometry performance

28.02.2017 | Materials Sciences

Calculating recharge of groundwater more precisely

28.02.2017 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>