Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Visualizing the imprints of past and present Earth dynamics

18.05.2012
New Lithosphere articles posted online May 16

New Lithosphere articles posted online 16 May 2012 report on (1) seismic anisotropy measured beneath 14 broadband stations in southeastern India; (2) why geoscientists should persist in their efforts to reach and study such spectacular sub-sea geologic features as the Mariana Trench (recently explored by film director James Cameron) and how "land geologists" can help this effort by studying on-land equivalents like ophiolites; and (3) pressures and melting temperatures of sediments deeply buried in Earth's mantle.

Seismic anisotropy beneath the eastern Dharwar Craton Sunil Kumar Roy et al., National Geophysical Research Institute, Seismic Hazard Group, Hyderabad 500007, India. Posted online 16 May 2012; doi: 10.1130/L198.1.

Seismic anisotropy is an intrinsic property of the Earth that imparts a directional dependence to the velocity of elastic waves and carries imprints of past and present deformation. Due to this phenomenon, a shear wave passing through an anisotropic medium gets polarized in a particular direction and splits into two orthogonal waves, with one wave traveling faster than the other. Analysis of the nature and difference in the arrival times of the fast and slow waves registered at a seismic station enables Sunil Kumar Roy and colleagues to parameterize anisotropy in terms of the delay time and fast polarization direction. They estimate the nature of anisotropy beneath 14 broadband stations in southeastern India, utilizing the core refracted (SKS, SKKS) and direct S waves to obtain a total of 113 high-quality measurements of delay time and fast polarization direction. The delay time between the fast and slow axes tend to cluster around 0.8 s, slightly lower than that observed globally for continental shield regions (~1 s). The fast directions at a majority of stations are in accordance with the present-day motion of the Indian plate, suggesting that the shear at the base of the Indian lithosphere is the primary cause of anisotropy. Interestingly, this study also brings out the effect of anisotropy frozen in the lithosphere due to past tectonic episodes. For example, stations in the vicinity of the east coast of India reveal a coast parallel trend, suggesting that anisotropy in the underlying medium may be the imprint of continental rifting that separated India from the rest of Gondwana.

To understand subduction initiation, study forearc crust: To understand forearc crust, study ophiolites R.J. Stern et al., Geosciences Dept., The University of Texas at Dallas, Richardson, Texas 75083-0688, USA. Posted online 16 May 2012; doi: 10.1130/L183.1.

Subduction is the process by which seafloor (oceanic crust and upper mantle) is returned to Earth's interior. Subduction is what powers the plates and thus may be the most important solid Earth process. Subduction results in spectacular geologic features, including "island arc" volcanoes like those of the U.S. Cascades and trenches like the Mariana Trench, which has recently been explored by film director James Cameron. As a result of studying many convergent plate margins around the world, geoscientists have a good understanding of how mature subduction zones operate but know far less about how new subduction zones form. In this paper, R.J. Stern and colleagues emphasize the importance of studying the igneous rocks of the ~100-mile-wide "forearc" region, which lies between the arc volcanoes and the trench, for understanding how new subduction zones are generated. Forearc igneous rocks preserve an outstanding record of how new subduction zones form, but direct study is difficult because forearcs are buried beneath younger sediments and often lie in the deepest parts of the ocean, where deep-sea studies require expensive research vessels and submersibles. This article explores why geoscientists must continue to study in situ forearcs and how land geologists can help this effort by studying on-land equivalents of forearc crust known as "ophiolites." Ophiolites are found on all continents, and they are important targets for geoscientific study because they present an opportunity for better understanding of the composition and origin of forearc crust and how new subduction zones form.

Melting of metasedimentary Rocks at Ultrahigh Pressure -- Insights from Experiments and Thermodynamic Calculations H.-J. Massonne and T. Fockenberg, Institut für Mineralogie und Kristallchemie, Universität Stuttgart, Azenbergstrasse 18, D-70174 Stuttgart, Germany. Posted online 16 May 2012; doi: 10.1130/L185.1.

H.-J. Massonne and T. Fockenberg use high pressure experiments at temperatures of 950 to 1400 degrees Celsius to simulate the melting of sediments deeply buried into Earth's mantle by geodynamic processes. Experimental pressures were at and above 3 GPa (greater than or equal to 100 km Earth depths). Temperatures close to 1000 and 1100 degrees Celsius at 3 GPa and 5 GPa, respectively, were sufficient to produce initial melts from the selected rocks. At a temperature of about 350 degrees Celsius above these temperatures, the rocks were completely molten. In addition, the melting was modeled by complex calculations using thermodynamic data for minerals and melt. Both methods resulted in initial melt compositions rich in water and potassium. With rising temperatures the melts become granitic with garnet plus coesite plus or minus kyanite as remaining solid phases. The new data were applied to natural diamondiferous rocks with sedimentary whole-rock compositions from the Erzgebirge in central Europe and the Kokchetav Massif in northern Kazakhstan. According to previously reported microfabrics etc. of these rocks, pointing to their partial melting and crystallization of diamond from the melt, the rocks would have been as hot as 1400 degrees Celsius (Erzgebirge) and 1200 degrees Celsius (Kokchetav Massif) once, probably at pressures of around 7 GPa. Furthermore, Massonne and Fockenberg conclude that granitic melts could also have been produced in deep mantle regions and not exclusively in lower portions of Earth's crust in the past.

Abstracts are online at http://lithosphere.gsapubs.org/content/early/recent. Representatives of the media may obtain complimentary copies of LITHOSPHERE articles by contacting Kea Giles at the address above.

Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to LITHOSPHERE in articles published. Contact Kea Giles for additional information or assistance.

Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org

Kea Giles | EurekAlert!
Further information:
http://www.geosociety.org

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>