Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses Hijack Deep-Sea Bacteria at Hydrothermal Vents

02.05.2014

More than a mile beneath the ocean’s surface, as dark clouds of mineral-rich water billow from seafloor hot springs called hydrothermal vents, unseen armies of viruses and bacteria wage war.

Like pirates boarding a treasure-laden ship, the viruses infect bacterial cells to get the loot: tiny globules of elemental sulfur stored inside the bacterial cells.


Image courtesy of MARUM, University of Bremen and NOAA-Pacific Marine Environmental Laboratory.

Black smoke from the top of a "chimney" in the Lau Basin in the western Pacific Ocean. Water samples collected by an unmanned submarine revealed how viruses hijack deep-sea bacteria at hydrothermal vents.

Instead of absconding with their prize, the viruses force the bacteria to burn the valuable sulfur reserves, then use the unleashed energy to replicate, eventually filling the bacterial cells to the bursting point.

“Our findings suggest that viruses in the dark oceans indirectly access vast energy sources in the form of elemental sulfur,” said University of Michigan marine microbiologist and oceanographer Gregory J. Dick, whose team collected DNA from deep-sea microbes in seawater samples from hydrothermal vent sites in the western Pacific Ocean and the Gulf of California.

The study identifies viruses as key players in the thriving ecosystems – which include exotic 6-foot tube worms, giant clams and mussels, as well as shrimp – huddled around deep-sea hydrothermal vents.

In addition, they hint that the viruses act as agents of evolution in chemosynthetic systems by swapping genes with the bacteria, Dick said. “We suggest that the viruses serve as a reservoir of genetic diversity that helps shape bacterial evolution,” he said.

A paper summarizing the findings is scheduled for online publication May 1 in Science. The first author is Karthik Anantharaman, a doctoral student in Dick’s lab at the Department of Earth and Environmental Sciences.

Similar microbial interactions have been observed in shallow ocean waters between photosynthetic bacteria and the viruses that prey on them. But this is the first time such a relationship has been seen in a chemosynthetic system, one in which the microbes rely solely on inorganic compounds, rather than sunshine, as their energy source.

Dick and his colleagues collected water samples during trips to the Eastern Lau Spreading Center in the Western Pacific and the Guaymas Basin in the Gulf of California. An unmanned submarine from the Woods Hole Oceanographic Institution captured the samples, at a depth of more than 6,000 feet, near “black smokers” spewing mineral-rich seawater at temperatures surpassing 500 degrees Fahrenheit.

Back in the laboratory, the researchers reconstructed near-complete viral and bacterial genomes from the DNA snippets retrieved at six hydrothermal vent plumes. In addition to the common sulfur-consuming bacterium SUP05, they found genes from five previously unknown viruses.

The genetic data suggest that the viruses prey on SUP05. That’s not too surprising, since viruses are the most abundant biological entities in the oceans and are a pervasive cause of mortality among marine microorganisms.

The real surprise is that the viral DNA contains genes closely related to SUP05 genes used to extract energy from sulfur compounds.

When combined with results from previous studies, this finding suggests that the viruses force SUP05 bacteria to use viral SUP05-like genes to help process stored globules of elemental sulfur. The SUP05-like viral genes are called auxiliary metabolic genes.

“We hypothesize that the viruses enhance bacterial consumption of this elemental sulfur, to the benefit of the viruses,” said co-author Melissa Duhaime, an assistant research scientist in the U-M Department of Ecology and Evolutionary Biology. The revved-up metabolic reactions may release energy that the viruses then use to replicate and spread.

“We suspect that these viruses are essentially hijacking bacterial cells and getting them to consume elemental sulfur so the viruses can propagate themselves,” Anantharaman said.

But how did SUP05-like genes end up in these viruses? The researchers can’t say for sure, but presumably the viruses snatched genes from SUP05 during some ancient microbial interaction.

“There seems to have been an exchange of genes, which implicates the viruses as an agent of evolution. That’s interesting from an evolutionary biology standpoint,” Dick said.

The new microbial findings will help researchers understand how marine biogeochemical cycles, including the sulfur cycle, will respond to global environmental changes such as the ongoing expansion of dead zones. SUP05 bacteria, which may generate the greenhouse gas nitrous oxide, will likely expand their range as oxygen-starved zones continue to grow in the oceans.

In addition to Anantharaman, Dick and Duhaime, authors of the Science paper are John A. Breir of the Woods Hole Oceanographic Institution, Kathleen Wendt of the University of Minnesota and Brandy M. Toner of the University of Minnesota.

The project was funded in part by the Gordon and Betty Moore Foundation through grants GBMF2609 and GBMF2764; the National Science Foundation through grants OCE-1038006, OCE-1038055, OCE-1037991 and OCE-1029242; and the U-M Rackham Graduate School Faculty Research Fellowship Program.

“Viruses play a cardinal role in biogeochemical processes in the ocean’s shallow and mid-to-deeper waters,” said David Garrison, program director in the National Science Foundation’s Division of Ocean Sciences, which funded the research. “This study suggests that viruses may have a similar importance in deep-sea thermal vent environments.”

Jim Erickson | newswise
Further information:
http://www.umich.edu

Further reports about: DNA Hydrothermal Oceanographic bacteria bacterial genes grants metabolic microbial oceans sulfur viruses

More articles from Earth Sciences:

nachricht Giant see-saw of monsoon rains detected
26.09.2016 | Potsdam-Institut für Klimafolgenforschung

nachricht A new 3D viewer for improved digital geoscience mapping
20.09.2016 | Uni Research

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Laser use for neurosurgery and biofabrication - LaserForum 2016 focuses on medical technology

27.09.2016 | Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

 
Latest News

New switch decides between genome repair and death of cells

27.09.2016 | Life Sciences

Nanotechnology for energy materials: Electrodes like leaf veins

27.09.2016 | Physics and Astronomy

‘Missing link’ found in the development of bioelectronic medicines

27.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>