Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses Hijack Deep-Sea Bacteria at Hydrothermal Vents

02.05.2014

More than a mile beneath the ocean’s surface, as dark clouds of mineral-rich water billow from seafloor hot springs called hydrothermal vents, unseen armies of viruses and bacteria wage war.

Like pirates boarding a treasure-laden ship, the viruses infect bacterial cells to get the loot: tiny globules of elemental sulfur stored inside the bacterial cells.


Image courtesy of MARUM, University of Bremen and NOAA-Pacific Marine Environmental Laboratory.

Black smoke from the top of a "chimney" in the Lau Basin in the western Pacific Ocean. Water samples collected by an unmanned submarine revealed how viruses hijack deep-sea bacteria at hydrothermal vents.

Instead of absconding with their prize, the viruses force the bacteria to burn the valuable sulfur reserves, then use the unleashed energy to replicate, eventually filling the bacterial cells to the bursting point.

“Our findings suggest that viruses in the dark oceans indirectly access vast energy sources in the form of elemental sulfur,” said University of Michigan marine microbiologist and oceanographer Gregory J. Dick, whose team collected DNA from deep-sea microbes in seawater samples from hydrothermal vent sites in the western Pacific Ocean and the Gulf of California.

The study identifies viruses as key players in the thriving ecosystems – which include exotic 6-foot tube worms, giant clams and mussels, as well as shrimp – huddled around deep-sea hydrothermal vents.

In addition, they hint that the viruses act as agents of evolution in chemosynthetic systems by swapping genes with the bacteria, Dick said. “We suggest that the viruses serve as a reservoir of genetic diversity that helps shape bacterial evolution,” he said.

A paper summarizing the findings is scheduled for online publication May 1 in Science. The first author is Karthik Anantharaman, a doctoral student in Dick’s lab at the Department of Earth and Environmental Sciences.

Similar microbial interactions have been observed in shallow ocean waters between photosynthetic bacteria and the viruses that prey on them. But this is the first time such a relationship has been seen in a chemosynthetic system, one in which the microbes rely solely on inorganic compounds, rather than sunshine, as their energy source.

Dick and his colleagues collected water samples during trips to the Eastern Lau Spreading Center in the Western Pacific and the Guaymas Basin in the Gulf of California. An unmanned submarine from the Woods Hole Oceanographic Institution captured the samples, at a depth of more than 6,000 feet, near “black smokers” spewing mineral-rich seawater at temperatures surpassing 500 degrees Fahrenheit.

Back in the laboratory, the researchers reconstructed near-complete viral and bacterial genomes from the DNA snippets retrieved at six hydrothermal vent plumes. In addition to the common sulfur-consuming bacterium SUP05, they found genes from five previously unknown viruses.

The genetic data suggest that the viruses prey on SUP05. That’s not too surprising, since viruses are the most abundant biological entities in the oceans and are a pervasive cause of mortality among marine microorganisms.

The real surprise is that the viral DNA contains genes closely related to SUP05 genes used to extract energy from sulfur compounds.

When combined with results from previous studies, this finding suggests that the viruses force SUP05 bacteria to use viral SUP05-like genes to help process stored globules of elemental sulfur. The SUP05-like viral genes are called auxiliary metabolic genes.

“We hypothesize that the viruses enhance bacterial consumption of this elemental sulfur, to the benefit of the viruses,” said co-author Melissa Duhaime, an assistant research scientist in the U-M Department of Ecology and Evolutionary Biology. The revved-up metabolic reactions may release energy that the viruses then use to replicate and spread.

“We suspect that these viruses are essentially hijacking bacterial cells and getting them to consume elemental sulfur so the viruses can propagate themselves,” Anantharaman said.

But how did SUP05-like genes end up in these viruses? The researchers can’t say for sure, but presumably the viruses snatched genes from SUP05 during some ancient microbial interaction.

“There seems to have been an exchange of genes, which implicates the viruses as an agent of evolution. That’s interesting from an evolutionary biology standpoint,” Dick said.

The new microbial findings will help researchers understand how marine biogeochemical cycles, including the sulfur cycle, will respond to global environmental changes such as the ongoing expansion of dead zones. SUP05 bacteria, which may generate the greenhouse gas nitrous oxide, will likely expand their range as oxygen-starved zones continue to grow in the oceans.

In addition to Anantharaman, Dick and Duhaime, authors of the Science paper are John A. Breir of the Woods Hole Oceanographic Institution, Kathleen Wendt of the University of Minnesota and Brandy M. Toner of the University of Minnesota.

The project was funded in part by the Gordon and Betty Moore Foundation through grants GBMF2609 and GBMF2764; the National Science Foundation through grants OCE-1038006, OCE-1038055, OCE-1037991 and OCE-1029242; and the U-M Rackham Graduate School Faculty Research Fellowship Program.

“Viruses play a cardinal role in biogeochemical processes in the ocean’s shallow and mid-to-deeper waters,” said David Garrison, program director in the National Science Foundation’s Division of Ocean Sciences, which funded the research. “This study suggests that viruses may have a similar importance in deep-sea thermal vent environments.”

Jim Erickson | newswise
Further information:
http://www.umich.edu

Further reports about: DNA Hydrothermal Oceanographic bacteria bacterial genes grants metabolic microbial oceans sulfur viruses

More articles from Earth Sciences:

nachricht Antarctic Ice Shelves Rapidly Thinning
30.03.2015 | University of California, San Diego

nachricht Climate change does not cause extreme winters
30.03.2015 | ETH Zurich

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

Im Focus: 3-D satellite, GPS earthquake maps isolate impacts in real time

Method produced by UI researcher could improve reaction time to deadly, expensive quakes

When an earthquake hits, the faster first responders can get to an impacted area, the more likely infrastructure--and lives--can be saved.

Im Focus: Atlantic Ocean overturning found to slow down already today

The Atlantic overturning is one of Earth’s most important heat transport systems, pumping warm water northwards and cold water southwards. Also known as the Gulf Stream system, it is responsible for the mild climate in northwestern Europe. 

Scientists now found evidence for a slowdown of the overturning – multiple lines of observation suggest that in recent decades, the current system has been...

Im Focus: Robot inspects concrete garage floors and bridge roadways for damage

Because they are regularly subjected to heavy vehicle traffic, emissions, moisture and salt, above- and underground parking garages, as well as bridges, frequently experience large areas of corrosion. Most inspection systems to date have only been capable of inspecting smaller surface areas.

From April 13 to April 17 at the Hannover Messe (hall 2, exhibit booth C16), engineers from the Fraunhofer Institute for Nondestructive Testing IZFP will be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

BLS Cargo orders 15 multisystem locomotives

30.03.2015 | Press release

Shark Tagged by NSU’s Guy Harvey Research Institute Is Apparently Enjoying Time in Warm, Tropical Waters

30.03.2015 | Life Sciences

Antarctic Ice Shelves Rapidly Thinning

30.03.2015 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>