Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VIMS team glides into polar research

20.01.2011
Underwater glider sets 2 Antarctic firsts

Researcher Walker Smith of the Virginia Institute of Marine Science, College of William and Mary, has been conducting shipboard studies of biological productivity in Antarctica's Ross Sea for the last three decades. This year he's letting underwater robots do some of the work.

Smith and graduate student Xiao Liu are using a two-year grant from the National Science Foundation to deploy and test a free-swimming underwater glider in the frigid waters of the Ross Sea near the U.S. McMurdo Research Station. The grant also funds efforts by fellow VIMS professor Marjorie Friedrichs to use glider data to help improve computer models of the Ross Sea's physics and biology.

Smith deployed the team's glider—SG503, also know as the Ice Dragon—for its first mission on November 29, 2010. He and colleagues, including investigators from Old Dominion University, launched the 114-pound vehicle through a whale breathing-hole, and then directed it into the open waters of the "polynya" that forms each austral summer when seasonal sea-ice melts from the Ross Sea.

The launch, at a latitude of 77°S, is the most southerly glider deployment ever. A short (and unintentional) jog off course also made it the first-ever glider to successfully dive beneath the Ross Ice Shelf.

The Ice Dragon glider in the waters of the Ross Sea.The glider has now—as of January 19, 2011—completed 783 dives to depths as great as 700 meters (2,330 feet), traveling a total of 1,402 kilometers (871 miles). It is scheduled to continue yo-yoing back and forth across the Ross Sea polynya until the researchers retrieve it in early February.

Each of the glider's dives lasts about 120 minutes, during which sensors on its fiberglass hull measure water temperature, salinity, levels of dissolved oxygen, and chlorophyll concentrations (the latter a measure of photosynthesis and phytoplankton abundance). At the end of each dive, the glider flips its tail into the air so that its antenna can send the collected data to researchers and receive guidance for its next dive. Data is transmitted via the Iridium satellite network.

The potential of gliders

Lacking a motor or propeller, gliders zigzag up and down through the water using a set of fins to translate changes in buoyancy into lateral motion. Their top speed is about one-half mile per hour. A small battery powers the buoyancy changes by forcing mineral oil in and out of an inflatable bladder. Moving the battery fore or aft within the hull shifts the center of gravity to control pitch, rotating it from side to side controls roll.

Smith says that gliders bring several potential benefits to ocean research. For one, because they're propelled by buoyancy changes rather than an energy-hungry motor, they can remain in the water for months at a time before needing a recharge (the current world record is a 4,500-mile transatlantic crossing that lasted 221 days, using the equivalent power of just 3 Christmas tree lights). Motor-driven underwater robots are limited to missions of a few days at most.

A glider's small size and simplicity (with only a few moving parts) also makes it relatively inexpensive to own and operate, especially compared to the costs of ship-based ocean research. Smith's glider—developed at the Applied Physics Laboratory at the University of Washington and now sold commercially by iRobot, Inc. (maker of the Roomba© vacuum cleaning robot)—cost $150,000. A single ship-day, including costs for fuel and crew, can run up to $60,000.

Dr. Mark Patterson, head of the Autonomous Systems Laboratory at VIMS and developer of the Fetch autonomous underwater vehicle (AUV), notes that gliders and other AUVs hold great promise for solving one of the oldest problems in oceanography: the fact that "the ocean changes faster than we have the ability to observe."

"Traditional ship-based studies can only provide snapshots of the constantly changing ocean ecosystem," says Patterson. He says "that's like trying to figure out what's going on in a TV series like 'Lost' by watching just one or two episodes per year." By sampling the ocean almost continually for months at a time, gliders allow researchers to better understand and model short-term physical changes and how they influence ocean biology.

Gliders in the Ross Sea

Previous studies by Smith and other polar researchers suggest that short-term physical variations—changes in sunlight, wind speed and direction, and current patterns—play a key role in controlling the magnitude, timing, and duration of phytoplankton blooms in the Ross Sea. These blooms sustain the Antarctic food web, from krill up to fish, seabirds, and marine mammals.

But a comprehensive understanding of how these short-term changes impact the polar ecosystem has so far remained elusive. That's where gliders come in.

"Our glider will help detail the physical and biological oceanography of the southern Ross Sea by sampling the region continuously through the growing season," says Smith. "Given its ability to repeatedly sample specific areas, it holds great promise for resolving short-term and seasonal trends."

Mission & Modeling

During the team's upcoming retrieval mission, which sets sail on January 19, Smith and Liu will first spend several weeks comparing their shipboard measurements of water temperature, salinity, dissolved oxygen, and chlorophyll to those recorded by the glider. That's to ensure that the glider's sensors are still accurately calibrated after more than two months in the water. The retrieval team will be aboard the research vessel Nathaniel B. Palmer.

Friedrichs will feed the glider's high-resolution data into computer models of physical and biological processes in the Ross Sea, with the long-term goal of making model predictions more accurate.

"Current models are difficult to evaluate using data that are appropriate on the same space and time scales," says Friedrichs. "Data collected by gliders over shorter time-scales are what we need to drive the next generation of circulation and ecosystem models. Improving the modeling and predictability of dynamic systems like the Ross Sea is our ultimate goal."

David Malmquist | EurekAlert!
Further information:
http://www.vims.edu

More articles from Earth Sciences:

nachricht Research sheds new light on forces that threaten sensitive coastlines
24.04.2017 | Indiana University

nachricht NASA sees the end of ex-Tropical Cyclone 02W
21.04.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>