Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

VIMS model now capable of street-level storm-tide predictions

26.03.2014

Test shows it could have accurately forecasted flooding in NYC during Sandy

The water that surged into the intersection of New York City’s Canal and Hudson streets during Hurricane Sandy—to choose just one flood-ravaged locale—was ultimately driven ashore by forces swirling hundreds of miles out in the Atlantic.


Modeling Animation: Storm-tide flooding of the Battery in New York City through several tidal cycles during Hurricane Sandy as modeled by Professor Harry Wang and colleagues at VIMS. Values are in meters above sea level.

Still from animation created by Dr. David Forrest.

That simple fact shows not only the scale and power of a tropical cyclone, but the difficulty of modeling and forecasting its potential for coastal flooding on the fine scale needed to most effectively prepare a response.

Now, a study led by Professor Harry Wang of William & Mary’s Virginia Institute of Marine Science demonstrates the ability to predict a hurricane’s storm tide at the level of individual neighborhoods and streets—a much finer scale than current operational methods.

The study, published in today’s issue of the Journal of Marine Science and Engineering, shows that with the right input, the team’s high-resolution computer model was able to simulate water levels to within 6-8 inches of those observed in New York City and surrounding areas during Hurricane Sandy’s approach and landfall in late October 2012. This includes sections of Manhattan where buildings and other infrastructure divert and channel floodwaters in exceptionally complex ways.

“Storm-surge modeling is a tough problem,” says Wang. “People are interested in the possibility of flooding on a very fine scale, on the order of their house, office, or street.” But for a forecast model to work, he says, “We have to resolve the boundary conditions——data on tides and winds—very far away, out into the open ocean. And we have to have that information far enough beforehand to provide time for people and agencies to respond.”

Wang and his modeling team—fellow VIMS researchers Derek Loftis, Zhuo Liu, David Forrest, and Joseph Zhang—conducted their study by “hindcasting” Hurricane Sandy’s landfall along the U.S. Atlantic coast. In this technique, scientists initiate a computer model with data collected before a past event, and then test the model’s accuracy by comparing its output with observations recorded as the event unfolded.

For their test case, Wang and colleagues first used a large-scale model called SELFE to hindcast Sandy-driven changes in water level along the entire East Coast, from Florida to Nova Scotia. They initialized SELFE by entering data on normal tidal conditions along the model’s open-ocean boundary, which is drawn almost 1,500 miles offshore. They allowed the model to "spin-up" for 10 days ahead of Sandy's approach, then another 5 days forward in time once the storm had entered the model grid, adding data on wind speed, wind direction, and air pressure in 6-minute time steps. They derived these data from NOAA’s large-scale NAM (North American Mesoscale) model and a separate fine-scale atmospheric model called RAMS. RAMS—short for Regional Atmospheric Modeling System—was developed by the Poquoson office of Weatherflow Inc., a private-sector provider of weather data.

Wang stresses the importance of a good atmospheric model. “You cannot accurately forecast storm surge without accurate wind forcing,” he says. “We are happy to be able to use RAMS, and it seems to be working quite well.”

Wang says the 6-minute time-step is also key to their model’s success. Some storm-surge models resolve time in increments as short as 3 seconds, but doing so requires computing power that exceeds even that available in W&M’s SciClone Computing Complex. “A 6-minute time-step allows us to run a 5-day simulation in 40 minutes,” says Wang. “That’s the kind of rapid run-time you need for forecasting.”

The second step for Wang’s team was to use output from the “large-domain” SELFE model—which they verified by comparing with actual readings from NOAA tide gauges between Long Island and Chesapeake Bay—to drive a model of much higher resolution focused on New York City and its harbor. This “sub-grid inundation model” incorporates high-resolution elevation data collected with LIDAR, a mapping technique that uses airborne lasers to map the ground surface to within a few inches of its actual height.

“High-resolution hydrodynamic models are essential to account for the effects of local features,” says Wang. “When water floods into a city, it encounters everything from waterfront berms to streets, railroads, parks, highways, subway stations, bridges, and building of all different kinds.” These structures and surfaces not only divert and channel the water, but provide different levels of friction that must be modeled as well.

VIMS Dean & Director John Wells calls the results of the team’s sub-grid inundation model a “breakthrough” in storm-tide forecasting—with model output within 6 to 8 inches of the water levels recorded in New York City during Sandy by the U.S. Geological Survey. The USGS measured Sandy’s flooding by deploying temporary tide gauges at selected sites during the storm, and by sending out teams of observers afterward to record mud and wrack lines on buildings, roadways, and other infrastructure.

Says Wang, “Our results compared very favorably with the USGS’ Hurricane Sandy Mapper database in terms of timing, area of inundation, and depth of floodwaters. The maximum extent of horizontal inundation was within 30 meters [90 feet] of the USGS values.”

Animations created by Assistant Research Scientist David Forrest show the accuracy of the sub-grid inundation model in stunning detail. “The animation clearly shows water going around buildings and rushing through the streets,” says Wang.

“What we’ve achieved is an efficient platform that addresses both large-scale storm tide and high-resolution inundation problems simultaneously,” he adds. “Our future plans are to add the many other processes that are at play during a hurricane—rainfall, filtration, storm-water drainage, and the effect of waves. That’s the goal for our future development and further improvements.”

David Malmquist | EurekAlert!
Further information:
http://www.vims.edu/newsandevents/topstories/sandy_hindcast.php

Further reports about: Animations Hurricane Hurricane Sandy Marine RAMS USGS VIMS coastal flooding forecasting models roadways

More articles from Earth Sciences:

nachricht NASA examines newly formed Tropical Depression 3W in 3-D
26.04.2017 | NASA/Goddard Space Flight Center

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>