Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video simulations of real earthquakes made available to worldwide network

23.09.2010
A Princeton University-led research team has developed the capability to produce realistic movies of earthquakes based on complex computer simulations that can be made available worldwide within hours of a disastrous upheaval.

The videos show waves of ground motion spreading out from an epicenter. In making them widely available, the team of computational seismologists and computer scientists aims to aid researchers working to improve understanding of earthquakes and develop better maps of the Earth's interior.

"In our view, this could truly change seismic science," said Princeton's Jeroen Tromp, a professor of geosciences and applied and computational mathematics, who led the effort. "The better we understand what happens during earthquakes, the better prepared we can be. In addition, advances in understanding seismic waves can aid basic science efforts, helping us understand the underlying physics at work in the Earth's interior. These visualizations, we believe, will add greatly to the research effort.''

In a scientific paper describing the system, which appeared online Sept. 16 and will be published in the October 2010 Geophysical Journal International, the team describes how it creates the videos. The movies will be made available for free to scientists and members of the public and news organizations interested in featuring such images on television and the Internet. The easily downloadable videos can be viewed at: global.shakemovie.princeton.edu. They tell the story in a language that is easy to understand, said Tromp, who also is the director of the Princeton Institute for Computational Science and Engineering (PICSciE).

When an earthquake takes place, data from seismograms measuring ground motion are collected by a worldwide network of more than 1,800 seismographic stations operated by members of the international Federation of Digital Seismograph Networks. The earthquake's location, depth and intensity also are determined. The ShakeMovie system at Princeton will now collect these recordings automatically using the Internet.

The scientists will input the recorded data into a computer model that creates a "virtual earthquake." The videos will incorporate both real data and computer simulations known as synthetic seismograms. These simulations fill the gaps between the actual ground motion recorded at specific locations in the region, providing a more complete view of the earthquake.

The animations rely on software that produces numerical simulations of seismic wave propagation in sedimentary basins. The software computes the motion of the Earth in three dimensions based on the actual earthquake recordings, as well as what is known about the subsurface structure of the region. The shape of underground geological structures in the area not recorded on seismograms is key, Tromp said, as the structures can greatly affect wave motion by bending, speeding, slowing or simply reflecting energy. The simulations are created on a parallel processing computer cluster built and maintained by PICSciE and on a computer cluster located at the San Diego Supercomputing Center.

After the three-dimensional simulations are computed, the software program plugs in data capturing surface motion, including displacement, velocity and acceleration, and maps it onto the topography of the region around the earthquake. The movies then are automatically published via the ShakeMovie portal. An e-mail also is sent to subscribers, including researchers, news media and the public.

The simulations will be made available to scientists through the data management center of the Incorporated Research Institutions for Seismology (IRIS) in Seattle. The organization distributes global scientific data to the seismological community via the Internet. Scientists can visit the IRIS website and download information. Due to the research team's work, they now will be able to compare seismograms directly with synthetic versions.

Advanced computing power made the synthetic seismograms possible, according to Dennis McRitchie, another author on the paper and a lead high-performance computing analyst for Princeton's Office of Information Technology. "This is computationally intensive -- it takes five hours to produce a 100-minute simulation," McRitchie said. The effort to numerically solve the differential equations that govern how the waves propagate through these complicated earth models requires 384 computers operating in parallel to analyze and process the numbers.

When an earthquake occurs, seismic waves are generated that propagate away from the fault rupture and course along the Earth's surface. The videos show the up-and-down motion of the waves in red (up) and blue (down). Strong red waves indicate rapid upward motion. Strong blue waves indicate the Earth's surface is moving quickly downward. The simulation shows that the waves are of uneven strength in different areas, depending on the quality of the soil and the orientation of the earthquake fault. When the waves pass through soft, sedimentary soils, they slow down and gain strength. Waves speed up through hard rock, lessening the impact on surface areas above. A clock in the video shows the time since the earthquake occurred.

The ShakeMovie portal showing earthquakes around the world is similar to one maintained at the California Institute of Technology that routinely does simulations of seismic events in the Southern California region.

Earthquake movies will be available for download about 1.5 hours after the occurrence of a quake of magnitude 5.5 or greater.

In addition to Tromp and McRitchie, other Princeton scientists on the paper include Ebru Bozdag and Daniel Peter, postdoctoral fellows, and Hejun Zhu, a graduate student, all in the Department of Geosciences. The development of the simulations also involved staff at PICSciE as well as Robert Knight, a lead high-performance computing analyst and others in Princeton's Office of Information Technology.

Other authors on the paper include: Dimitri Komatisch of the Universite de Pau et des Pays de L'Adour in Paris; Vala Hjorleifsdottir of Lamont-Doherty Earth Observatory of Columbia University; Qinya Liu of the University of Toronto; Paul Friberg of Instrumental Software Technologies in New York; and Chad Trabant and Alex Hutko of IRIS.

The research was funded by the National Science Foundation.

Kitta MacPherson | EurekAlert!
Further information:
http://www.princeton.edu
http://www.princeton.edu/main/news/archive/S28/39/85O68/

More articles from Earth Sciences:

nachricht Large-Mouthed Fish Was Top Predator After Mass Extinction
26.07.2017 | Universität Zürich

nachricht Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds
25.07.2017 | University of Illinois at Urbana-Champaign

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

CCNY physicists master unexplored electron property

26.07.2017 | Physics and Astronomy

Molecular microscopy illuminates molecular motor motion

26.07.2017 | Life Sciences

Large-Mouthed Fish Was Top Predator After Mass Extinction

26.07.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>