Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Video: Can a Stack of Computer Servers Survive an Earthquake?


Tests at the University at Buffalo show local seismic isolation and damping methods can protect sensitive electronic equipment

How do you prevent an earthquake from destroying expensive computer systems?

Credit: Cory Nealon, University at Buffalo

The rack of servers shook, but did not fall, during a simulation that mimicked 80 percent of the force of 1994's Northridge earthquake.

That’s the question earthquake engineer Claudia Marin-Artieda, PhD, associate professor of civil engineering at Howard University, aims to answer through a series of experiments conducted at the University at Buffalo.

“The loss of functionality of essential equipment and components can have a disastrous impact. We can limit these sorts of equipment losses by improving their seismic performance,” Marin-Artieda said.

• Here is a video showing one of the tests, which mimics 80 percent of the force of 1994's Northridge earthquake:

In buildings such as data centers, power plants and hospitals, it could be catastrophic to have highly-sensitive equipment swinging, rocking, falling and generally bashing into things.

In high-seismic regions, new facilities often are engineered with passive protective systems that provide overall seismic protection. But often, existing facilities are conventional fixed-base buildings in which seismic demands on sensitive equipment located within are significantly amplified. In such buildings, sensitive equipment needs to be secured from these damaging earthquake effects, Marin-Artieda said.

The stiffer the building, the greater the magnification of seismic effects, she added.

“It is like when you are riding a rollercoaster,” she said. “If your body is relaxed, you don’t feel strong inertial effects. But if you hold your body rigid, you’ll feel the inertial effects much more, and you’ll get knocked about in the car.”

The experiments were conducted this month at the University at Buffalo’s Network for Earthquake Engineering Simulation (NEES), a shared network of laboratories based at Purdue University.

Marin-Artieda and her team used different devices for supporting 40 computer servers donated by Yahoo Labs. The researchers attached the servers to a frame in multiple configurations on seismically isolated platforms. They then subjected the frame to a variety of three-directional ground motions with the servers in partial operation to monitor how they react to an earthquake simulation.

Preliminary work confirmed, among other things, that globally and locally installed seismic isolation and damping systems can significantly reduce damage to computer systems and other electronic equipment.

Base isolation is a technique that sets objects atop an energy-absorbing base; damping employs energy-absorbing devices within the object to be protected from an earthquake’s damaging effects.

Marin-Artieda plans to expand the research by developing a framework for analysis, design and implementation of the protective measures.

The research is funded by the National Science Foundation. In addition to Yahoo Labs, industry partners include Seismic Foundation Control Inc., The VMC Group, Minus K Technology Inc., Base Isolation of Alaska, and Roush Industries Inc. All provided in-kind materials for the experiments.


Marti LaChance,
Purdue University

Cory Nealon,
University at Buffalo

Cory Nealon | newswise

Further reports about: Buffalo Earthquake Video conventional earthquake effects materials protective

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>