Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Video: Can a Stack of Computer Servers Survive an Earthquake?

04.09.2014

Tests at the University at Buffalo show local seismic isolation and damping methods can protect sensitive electronic equipment

How do you prevent an earthquake from destroying expensive computer systems?


Credit: Cory Nealon, University at Buffalo

The rack of servers shook, but did not fall, during a simulation that mimicked 80 percent of the force of 1994's Northridge earthquake.

That’s the question earthquake engineer Claudia Marin-Artieda, PhD, associate professor of civil engineering at Howard University, aims to answer through a series of experiments conducted at the University at Buffalo.

“The loss of functionality of essential equipment and components can have a disastrous impact. We can limit these sorts of equipment losses by improving their seismic performance,” Marin-Artieda said.

• Here is a video showing one of the tests, which mimics 80 percent of the force of 1994's Northridge earthquake: http://bit.ly/1lyO1aZ.

In buildings such as data centers, power plants and hospitals, it could be catastrophic to have highly-sensitive equipment swinging, rocking, falling and generally bashing into things.

In high-seismic regions, new facilities often are engineered with passive protective systems that provide overall seismic protection. But often, existing facilities are conventional fixed-base buildings in which seismic demands on sensitive equipment located within are significantly amplified. In such buildings, sensitive equipment needs to be secured from these damaging earthquake effects, Marin-Artieda said.

The stiffer the building, the greater the magnification of seismic effects, she added.

“It is like when you are riding a rollercoaster,” she said. “If your body is relaxed, you don’t feel strong inertial effects. But if you hold your body rigid, you’ll feel the inertial effects much more, and you’ll get knocked about in the car.”

The experiments were conducted this month at the University at Buffalo’s Network for Earthquake Engineering Simulation (NEES), a shared network of laboratories based at Purdue University.

Marin-Artieda and her team used different devices for supporting 40 computer servers donated by Yahoo Labs. The researchers attached the servers to a frame in multiple configurations on seismically isolated platforms. They then subjected the frame to a variety of three-directional ground motions with the servers in partial operation to monitor how they react to an earthquake simulation.

Preliminary work confirmed, among other things, that globally and locally installed seismic isolation and damping systems can significantly reduce damage to computer systems and other electronic equipment.

Base isolation is a technique that sets objects atop an energy-absorbing base; damping employs energy-absorbing devices within the object to be protected from an earthquake’s damaging effects.

Marin-Artieda plans to expand the research by developing a framework for analysis, design and implementation of the protective measures.

The research is funded by the National Science Foundation. In addition to Yahoo Labs, industry partners include Seismic Foundation Control Inc., The VMC Group, Minus K Technology Inc., Base Isolation of Alaska, and Roush Industries Inc. All provided in-kind materials for the experiments.

Contact:

Marti LaChance, lachance@purdue.edu
Purdue University
765-496-3014

Cory Nealon, cmnealon@buffalo.edu
University at Buffalo
716-645-4614

Cory Nealon | newswise

Further reports about: Buffalo Earthquake Video conventional earthquake effects materials protective

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-assembling nano inks form conductive and transparent grids during imprint

Transparent electronics devices are present in today’s thin film displays, solar cells, and touchscreens. The future will bring flexible versions of such devices. Their production requires printable materials that are transparent and remain highly conductive even when deformed. Researchers at INM – Leibniz Institute for New Materials have combined a new self-assembling nano ink with an imprint process to create flexible conductive grids with a resolution below one micrometer.

To print the grids, an ink of gold nanowires is applied to a substrate. A structured stamp is pressed on the substrate and forces the ink into a pattern. “The...

Im Focus: The Glowing Brain

A new Fraunhofer MEVIS method conveys medical interrelationships quickly and intuitively with innovative visualization technology

On the monitor, a brain spins slowly and can be examined from every angle. Suddenly, some sections start glowing, first on the side and then the entire back of...

Im Focus: Newly discovered material property may lead to high temp superconductivity

Researchers at the U.S. Department of Energy's (DOE) Ames Laboratory have discovered an unusual property of purple bronze that may point to new ways to achieve high temperature superconductivity.

While studying purple bronze, a molybdenum oxide, researchers discovered an unconventional charge density wave on its surface.

Im Focus: Mapping electromagnetic waveforms

Munich Physicists have developed a novel electron microscope that can visualize electromagnetic fields oscillating at frequencies of billions of cycles per second.

Temporally varying electromagnetic fields are the driving force behind the whole of electronics. Their polarities can change at mind-bogglingly fast rates, and...

Im Focus: Continental tug-of-war - until the rope snaps

Breakup of continents with two speed: Continents initially stretch very slowly along the future splitting zone, but then move apart very quickly before the onset of rupture. The final speed can be up to 20 times faster than in the first, slow extension phase.phases

Present-day continents were shaped hundreds of millions of years ago as the supercontinent Pangaea broke apart. Derived from Pangaea’s main fragments Gondwana...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

GROWING IN CITIES - Interdisciplinary Perspectives on Urban Gardening

15.07.2016 | Event News

SIGGRAPH2016 Computer Graphics Interactive Techniques, 24-28 July, Anaheim, California

15.07.2016 | Event News

 
Latest News

Vortex laser offers hope for Moore's Law

29.07.2016 | Power and Electrical Engineering

Novel 'repair system' discovered in algae may yield new tools for biotechnology

29.07.2016 | Life Sciences

Clash of Realities 2016: 7th Conference on the Art, Technology and Theory of Digital Games

29.07.2016 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>