Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variable southeast summer rainfall linked to climate change

28.10.2010
A doubling of abnormally wet or dry summer weather in the southeastern United States in recent decades has come from an intensification of the summertime North Atlantic Subtropical High (NASH), or "Bermuda High."

And that intensification appears to be coming from global warming, according to a new analysis by a Duke University-led team of climate scientists.

The NASH is an area of high pressure that forms each summer near Bermuda, where its powerful surface center helps steer Atlantic hurricanes and plays a major role in shaping weather in the eastern United States, Western Europe and northwestern Africa.

By analyzing six decades of U.S. and European weather and climate data, the team found that the center of the NASH intensified by 0.9 geopotential meters a decade on average from 1948 to 2007. (Geopotential meters are used to measure how high above sea level a pressure system extends; the greater the height, the greater the intensity.)

The team's analysis found that as the NASH intensified, its area grew, bringing the high's weather-making western ridge closer to the continental United States by 1.22 longitudinal degrees a decade.

"This is not a natural variation like El Nino," says lead author Wenhong Li, assistant professor of earth and ocean sciences at Duke University's Nicholas School of the Environment. "We thoroughly investigated possible natural causes, including the Atlantic Multivariate Oscillation (AMO) and Pacific Decadal Oscillation (PDO), which may affect highs, but found no links.

"Our analysis strongly suggests that the changes in the NASH are mainly due to anthropogenic warming," she says.

An early online edition of the study, published in the Journal of Climate, is available at the American Meteorological Society's website at http://journals.ametsoc.org/doi/pdf/10.1175/2010JCLI3829.1.

As the NASH intensified and migrated westward, Li's team's analysis found that its north-south movement also was enhanced from 1978 to 2007, a period when the frequency of extreme summer rainfall variability in the Southeast more than doubled over the previous 30 years. From 1978 to 2007, six summers were abnormally wet, while five were abnormally dry. Those 11 summers – defined in this study as the months of June, July and August – had total seasonal precipitation anomalies greater than one standard deviation from the mean.

To forecast future trends in the NASH's intensity, the team used climate models developed for use by the Intergovernmental Panel on Climate Change's Fourth Assessment Report in 2007. The models – known as Coupled Model Intercomparison Project Phase 3 (CMIP3) models – predict the NASH will continue to intensify and expand as concentrations of carbon dioxide and other greenhouse gases increase in Earth's atmosphere in coming decades.

"This intensification will further increase the likelihood of extreme summer precipitation variability – periods of drought or deluge – in southeastern states in coming decades," Li says.

If the NASH 's western ridge jogs a little to the north as it expands, the likelihood increases for more extreme dry weather in the Southeast that summer, she explains. If the NASH wobbles a little to the south, extreme wet weather becomes more likely.

Li's coauthors are Laifong Li of Duke University; Rong Fu of the University of Texas at Austin; Yi Deng of the Georgia Institute of Technology; and Hui Wang of the National Atmospheric and Oceanic Administration's Climate Prediction Center in Camp Spring, Md., and Wyle Information Systems in McLean, Va.

In addition to long-term rainfall data and the CMIP3 models, the team conducted the study on atmospheric reanalysis data from the U.S. National Center for Environmental Prediction/National Center for Atmospheric Research and the European Centre for Medium-Range Weather Forecasts.

Funding for the study came from Duke University and the Nicholas School Office of the Dean.

Tim Lucas | EurekAlert!
Further information:
http://www.duke.edu

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>