Vancouver: Nearby Georgia basin may amplify ground shaking from next quake

“For very stiff soils, current building codes don't include amplification of ground motion,” said lead author Sheri Molnar, a researcher at the University of British Columbia. “While the building codes say there should not be any increase or decrease in ground motion, our results show that there could be an average amplification of up to a factor of three or four in Greater Vancouver.”

The research provides the first detailed studies of 3D earthquake ground motion for a sedimentary basin in Canada. Since no large crustal earthquakes have occurred in the area since the installation of a local seismic network, these studies offer refined predictions of ground motion from large crustal earthquakes likely to occur.

Southwestern British Columbia is situated above the seismically active Cascadia subduction zone. A complex tectonic region, earthquakes occur in three zones: the thrust fault interface between the Juan de Fuca plate, which is sliding beneath the North America plate; within the over-riding North America plate; and within the subducting Juan de Fuca plate.

Molnar and her colleagues investigate the effect the three dimensional (3D) deep basin beneath Greater Vancouver has on the earthquake-generated waves that pass through it. The Georgia basin is one in a series of basins spanning form California to southern Alaska along the Pacific margin of the North America and is relatively wide and shallow. The basin is filled with sedimentary layers of silts, sands and glacial deposits.

While previous research suggested how approximately 100 meters of material near the surface would affect ground shaking, no studies had looked at the effect of the 3D basin structure on long period seismic waves.

To fill in that gap in knowledge, Molnar and colleagues performed numerical modeling of wave propagation, using various scenarios for both shallow quakes (5 km in depth) within the North America plate and deep quakes (40 – 55 km in depth) within the Juan de Fuca subducting plate, the latter being the most common type of earthquake. The authors did not focus on earthquakes generated by a megathrust rupture of the Cascadia subduction zone, a scenario studied previously by co-author Kim Olsen of San Diego State University.

For these two studies, the authors modeled 10 scenario earthquakes for the subducting plate and 8 shallow crustal earthquakes within the North America plate, assuming rupture sites based on known seismicity. The computational analyses suggest the basin distorts the seismic radiation pattern – how the energy moves through the basin – and produces a larger area of higher ground motions. Steep basin edges excite the seismic waves, amplifying the ground motion.

The largest surface waves generated across Greater Vancouver are associated with earthquakes located approximately 80 km or more, south-southwest of the city, suggest the authors.

“The results were an eye opener,” said Molnar. “Because of the 3D basin structure, there's greater hazard since it will amplify ground shaking. Now we have a grasp of how much the basin increases ground shaking for the most likely future large earthquakes.”

In Greater Vancouver, there are more than 700 12-story and taller commercial and residential buildings, and large structures – high-rise buildings, bridges and pipelines – that are more affected by long period seismic waves, or long wavelength shaking. “That's where these results have impact,” said Molnar.

The papers — “Earthquake Ground Motion and 3D Georgia Basin Amplication in SW British Columbia: Deep Jan de Fuca Plate Scenario Earthquakes” and “Earthquake Ground Motion and 3D Georgia Basin Amplification in SW British Columbia: Shallow Blind-Thrust Scenario Earthquakes” — by Molnar; John F. Cassidy, Natural Resources Canada; Kim B. Olsen, San Diego State University; Stan E. Dosso, University of Victoria; and Jiangheng He, National Resources Canada; will appear in the February print issue of BSSA and be published online Jan. 21, 2014.

Media Contact

Nan Broadbent EurekAlert!

More Information:

http://www.seismosoc.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

High-energy-density aqueous battery based on halogen multi-electron transfer

Traditional non-aqueous lithium-ion batteries have a high energy density, but their safety is compromised due to the flammable organic electrolytes they utilize. Aqueous batteries use water as the solvent for…

First-ever combined heart pump and pig kidney transplant

…gives new hope to patient with terminal illness. Surgeons at NYU Langone Health performed the first-ever combined mechanical heart pump and gene-edited pig kidney transplant surgery in a 54-year-old woman…

Biophysics: Testing how well biomarkers work

LMU researchers have developed a method to determine how reliably target proteins can be labeled using super-resolution fluorescence microscopy. Modern microscopy techniques make it possible to examine the inner workings…

Partners & Sponsors