Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UW Scientists Team with Coast Guard to Explore Ice-Free Arctic Ocean

04.10.2012
With the melting ice in the Arctic, U.S. Coast Guard crews based in Alaska have taken on a new challenge: carefully deploying scientific equipment through cracks in the ice from an airplane hundreds of feet in the air.

It's all part of a new partnership that has evolved since disappearing Arctic ice has opened vast new frontiers -- for the Coast Guard and for University of Washington scientists.

This year, the lowest ebb of Arctic sea ice covered less area than at any time since scientists began recording it. From 1979 to 2000, the average low point for the year was 7 million square kilometers, or 2.7 million square miles. This year, it's less than half as much -- 3.4 million square kilometers.

"It used to be that the ice just pulled back a bit from the beach each year," said Jamie Morison, an oceanographer at the UW's Applied Physics Laboratory. "Now we're seeing huge areas of open water."

Suddenly faced with a great expansion of the water over which it must monitor ship traffic and perform search-and-rescue operations, the Coast Guard has begun making regular flights over the Arctic, taking off from Kodiak, Alaska. UW researchers, equally eager to explore the newly accessible ocean, are among those who have tagged along on regular Coast Guard flights, known as Arctic Domain Awareness flights, to deploy scientific equipment.

The UW is leading a project known as the Seasonal Ice Zone Reconnaissance Surveys that aims to take repeated ocean, ice and atmospheric measurements in the Beaufort and Chukchi Seas, north and west of Alaska.

Researchers are able to arrange for deployment of equipment to take those measurements via the Coast Guard's scheduled C-130 Hercules aircraft tours. They have flown monthly this summer, with Coast Guard crews deploying 19 probes as far as 80 degrees north latitude, north of most land masses. The final flight will be in mid-October, after which it gets too dark to travel very far and the ice returns.

The researchers are studying the impact of the lack of ice cover. For instance, ocean surface temperature can be 5 or 6 degrees warmer without ice. Because there's no ice to block solar radiation, the layer of warmer water extends deeper and that affects circulation patterns and slows the growth of ice during the winter. Changes in the ocean surface temperatures can also have profound effect on the atmosphere and changes in the temperature, humidity and cloud cover can in turn affect how fast sea ice melts or grows.

"For the first time we're measuring ocean and atmosphere in an integrated way and trying to track the changes," said Axel Schweiger, a climatologist and chair of the Applied Physics Laboratory's Polar Science Center.

UW scientists involved with the International Arctic Buoy Program, designed to monitor sea level pressure, surface air temperature and ice motion, have also taken advantage of the Coast Guard flights. The multiagency program is led by the UW's Polar Science Center and has deployed hundreds of buoys in the Arctic since 1979.

The researchers have modified some equipment so it can be tossed out of airplanes rather than deployed by ship. One large buoy used by the International Arctic Buoy Program carries instruments that transmit air temperature and pressure information via satellite and gets rolled out of the back of the airplane flying 300 feet above the surface. At that height, a parachute fills and releases in time to temper the buoy's landing. If the buoy is dropped from higher it might hit too hard, damaging the instruments; too low and the parachute may drag the buoy sideways in the water. The researchers have learned about both issues the hard way.

Coast Guard crews have also been deploying 3-foot-long, tube-shaped instrument packages out the side door of the planes. Once the package hits the water, it drops a torpedo-shaped sensor probe that travels to a depth of 1,000 meters, or 3,280 feet, in about 10 minutes. The probe is connected by a thin copper wire to a radio transmitter that floats on the surface. The probe sends data about water temperature and salinity up the thin wire to the surface transmitter, which relays it by VHF radio back to the airplane circling above.

Without the planes, the researchers would have to hire a ship, usually an icebreaker, to bring the instruments to the targeted location. Or, they could pay for a specialized research aircraft, an expensive proposition, particularly for research that benefits from weekly or monthly expeditions. "You won't get that kind of repeat coverage with a designated research aircraft," Schweiger said.

The Coast Guard appears to get some value from taking the scientists along too. Data from the buoys about air pressure and temperature is fed into the world meteorological network.

"This weather data helps them fly safely," said Ignatius Rigor, a mathematician at the Applied Physics Laboratory who coordinates the International Arctic Buoy Program.

The scientists can also field questions from the crew about ice thickness and the weather in the area, Morison said.

The data they collect is already being used by many institutions as well, including the National Snow and Ice Data Center, which closely monitors Arctic sea ice.

The researchers hope to be able to continue their collaboration with the Coast Guard in years to come.

The Seasonal Ice Zone Reconnaissance Surveys program is funded by the Office of Naval Research and the International Arctic Buoy Program is funded by the 20 research and operational institutions that comprise the program.

For more information, contact Schweiger at axel@apl.washington.edu or 206-543-1312.

Nancy Gohring | Newswise Science News
Further information:
http://www.uw.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>