Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


URI Scientists Investigating Life, Geologic Processes Deep Inside Earth as Part of Deep Carbon Observatory

Research being presented at AGU conference Dec. 9-13

Scientists at the University of Rhode Island’s Graduate School of Oceanography are shedding light on the genetic makeup of Earth’s deep microbial life and the geochemistry of the lavas that form the Earth’s crust through research conducted as part of the Deep Carbon Observatory, a 10-year international collaboration unraveling the mysteries of Earth’s inner workings.

Their research is being presented this week at the fall meeting of the American Geophysical Union in San Francisco.

Oceanography Professor Steven D’Hondt, along with postdoctoral researcher John Kirkpatrick and graduate student Emily Walsh, are working with other scientists to census microbes that live deep below Earth’s surface. By conducting DNA analyses of microbes from sediments deep beneath the ocean floor, deep continental aquifers in South Africa, North America and Europe and elsewhere, they are discovering a fascinating network of subterranean microbial life.

“There is widespread interest in learning whether there are unique organisms living down there, or whether it is dominated by organisms that are common at the surface,” said D’Hondt. “Are the same microorganisms found everywhere or is every subsurface ecosystem different? We’re mapping the geographic diversity of the subsurface world.”

The URI team is working to understand the evolution and natural selection of subsurface microbes. By sampling microbial communities from different depths and comparing samples from beneath the Indian Ocean, the Bering Sea, the South Pacific and elsewhere, they have found that very few types of microbes last very long.

“There doesn’t appear to be any single trait or characteristic that is key to survival in these challenging environments,” Kirkpatrick said. “If there were, there would be consistent winners and consistent losers, but the winners aren’t consistent and almost everything seems to be losing and getting wiped out. It’s remarkable that anything at all can survive under those conditions.”

Meanwhile, Katherine Kelley, associate professor of oceanography, and colleagues at the Smithsonian Institution will report at the conference on their discovery of unsuspected linkages between the oxidation state of iron in volcanic rocks and variations in the chemistry of the deep Earth. Their findings suggest that carbon plays a more significant role in the circulation of the deep Earth than had previously been predicted.

“The relationships we’ve observed in basalts at mid-ocean ridges come about from the melting of Earth’s upper mantle, and it tells us about the chemistry and composition of Earth beneath ocean basins,” Kelley said. “We found a surprising relationship between the composition of lavas and the oxidation state of iron in the lavas.”

The researchers used a microanalytical method called X-ray Absorption Near Edge Structure to analyze lava samples from mid-ocean ridges and found that carbon provides the means for exchanging oxygen and electrons with iron in the mantle, which is contrary to many years of previous research.

“Carbon in Earth’s interior is impossible to measure directly, but it’s important that we know how much carbon there is because the volcanic flux of carbon out of Earth’s interior is a big variable in understanding how atmospheric CO2 is cycled through our planet,” Kelley said. “And that ties into our climate and the evolution of Earth.”

Funded in part by the Alfred P. Sloan Foundation, the Deep Carbon Observatory is a $500 million research project to discover the quantity, movement, origin and forms of carbon deep inside the earth. The URI Office of Marine Programs, based at the Graduate School of Oceanography, oversees all international engagement activities for the Observatory.

Todd McLeish | Newswise
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>