Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI Scientists Investigating Life, Geologic Processes Deep Inside Earth as Part of Deep Carbon Observatory

11.12.2013
Research being presented at AGU conference Dec. 9-13

Scientists at the University of Rhode Island’s Graduate School of Oceanography are shedding light on the genetic makeup of Earth’s deep microbial life and the geochemistry of the lavas that form the Earth’s crust through research conducted as part of the Deep Carbon Observatory, a 10-year international collaboration unraveling the mysteries of Earth’s inner workings.

Their research is being presented this week at the fall meeting of the American Geophysical Union in San Francisco.

Oceanography Professor Steven D’Hondt, along with postdoctoral researcher John Kirkpatrick and graduate student Emily Walsh, are working with other scientists to census microbes that live deep below Earth’s surface. By conducting DNA analyses of microbes from sediments deep beneath the ocean floor, deep continental aquifers in South Africa, North America and Europe and elsewhere, they are discovering a fascinating network of subterranean microbial life.

“There is widespread interest in learning whether there are unique organisms living down there, or whether it is dominated by organisms that are common at the surface,” said D’Hondt. “Are the same microorganisms found everywhere or is every subsurface ecosystem different? We’re mapping the geographic diversity of the subsurface world.”

The URI team is working to understand the evolution and natural selection of subsurface microbes. By sampling microbial communities from different depths and comparing samples from beneath the Indian Ocean, the Bering Sea, the South Pacific and elsewhere, they have found that very few types of microbes last very long.

“There doesn’t appear to be any single trait or characteristic that is key to survival in these challenging environments,” Kirkpatrick said. “If there were, there would be consistent winners and consistent losers, but the winners aren’t consistent and almost everything seems to be losing and getting wiped out. It’s remarkable that anything at all can survive under those conditions.”

Meanwhile, Katherine Kelley, associate professor of oceanography, and colleagues at the Smithsonian Institution will report at the conference on their discovery of unsuspected linkages between the oxidation state of iron in volcanic rocks and variations in the chemistry of the deep Earth. Their findings suggest that carbon plays a more significant role in the circulation of the deep Earth than had previously been predicted.

“The relationships we’ve observed in basalts at mid-ocean ridges come about from the melting of Earth’s upper mantle, and it tells us about the chemistry and composition of Earth beneath ocean basins,” Kelley said. “We found a surprising relationship between the composition of lavas and the oxidation state of iron in the lavas.”

The researchers used a microanalytical method called X-ray Absorption Near Edge Structure to analyze lava samples from mid-ocean ridges and found that carbon provides the means for exchanging oxygen and electrons with iron in the mantle, which is contrary to many years of previous research.

“Carbon in Earth’s interior is impossible to measure directly, but it’s important that we know how much carbon there is because the volcanic flux of carbon out of Earth’s interior is a big variable in understanding how atmospheric CO2 is cycled through our planet,” Kelley said. “And that ties into our climate and the evolution of Earth.”

Funded in part by the Alfred P. Sloan Foundation, the Deep Carbon Observatory is a $500 million research project to discover the quantity, movement, origin and forms of carbon deep inside the earth. The URI Office of Marine Programs, based at the Graduate School of Oceanography, oversees all international engagement activities for the Observatory.

Todd McLeish | Newswise
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht NASA finds newly formed tropical storm lan over open waters
17.10.2017 | NASA/Goddard Space Flight Center

nachricht The melting ice makes the sea around Greenland less saline
16.10.2017 | Aarhus University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>