Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI geologist develops improved seismic model for monitoring nuclear explosions in Middle East

17.12.2010
Geologists from the University of Rhode Island and Princeton University, in collaboration with Lawrence Livermore National Laboratory, have taken an important step toward helping the United States government monitor nuclear explosions by improving a 3-dimensional model originally developed at Harvard University. The improvements make the model more accurate at detecting the location, source and depth of seismic activity.

The results of their research were presented today at a meeting of the American Geophysical Union in San Francisco.

The National Nuclear Security Administration uses numerous seismic models in its efforts to monitor the globe for underground nuclear explosions detonated by nations that seek to keep their nuclear activities undetected. But not only is it difficult to identify exactly where an explosion takes place, it is especially challenging to differentiate the seismic waves generated by nuclear explosions from those generated by earthquakes, volcanic activity and mine collapses.

"The goal is to build a model of the Earth that will locate seismic events and characterize those events precisely while reducing potential errors," said Brian Savage, URI assistant professor of geosciences.

The model spans the politically sensitive region from Turkey to India, including Iran, Iraq and Afghanistan, a region Savage describes as "tectonically complex."

Savage and his colleagues analyzed data from 200 earthquakes collected by 150 seismic stations in the region between 1990 and 2007. They compared the data with that from simulated earthquakes to identify deficiencies in the model, then propagated the simulated earthquakes in reverse to determine where to improve and update the model.

Different types of seismic waves travel in different ways and at different speeds. P-waves, for instance, are the first waves recorded from an earthquake or explosion, and they behave similar to sound waves. S-waves are secondary waves that travel in a snake-like side-to-side fashion. Surface waves are a combination of the two traveling much slower with much larger amplitude.

"Depending on the material the waves travel through, it may slow down or speed up the waves," said Savage, who notes that the model requires a great deal of computer power to run. "So when you look at the relative timing of the waves, you can tell what the material is that it's traveling through."

The improvements the researchers made to the model focused on long period surface waves and identifying the magnitude of a seismic event.

"The amplitude ratios of different wave types is a key factor in discriminating whether an event is manmade or not," Savage said.

The improved model is expected to be complete by next summer. The research was funded by he National Nuclear Security Administration and the Air Force Research Laboratory.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
26.05.2017 | Oregon State University

nachricht Devils Hole: Ancient Traces of Climate History
24.05.2017 | Universität Innsbruck

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>