Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI geologist develops improved seismic model for monitoring nuclear explosions in Middle East

17.12.2010
Geologists from the University of Rhode Island and Princeton University, in collaboration with Lawrence Livermore National Laboratory, have taken an important step toward helping the United States government monitor nuclear explosions by improving a 3-dimensional model originally developed at Harvard University. The improvements make the model more accurate at detecting the location, source and depth of seismic activity.

The results of their research were presented today at a meeting of the American Geophysical Union in San Francisco.

The National Nuclear Security Administration uses numerous seismic models in its efforts to monitor the globe for underground nuclear explosions detonated by nations that seek to keep their nuclear activities undetected. But not only is it difficult to identify exactly where an explosion takes place, it is especially challenging to differentiate the seismic waves generated by nuclear explosions from those generated by earthquakes, volcanic activity and mine collapses.

"The goal is to build a model of the Earth that will locate seismic events and characterize those events precisely while reducing potential errors," said Brian Savage, URI assistant professor of geosciences.

The model spans the politically sensitive region from Turkey to India, including Iran, Iraq and Afghanistan, a region Savage describes as "tectonically complex."

Savage and his colleagues analyzed data from 200 earthquakes collected by 150 seismic stations in the region between 1990 and 2007. They compared the data with that from simulated earthquakes to identify deficiencies in the model, then propagated the simulated earthquakes in reverse to determine where to improve and update the model.

Different types of seismic waves travel in different ways and at different speeds. P-waves, for instance, are the first waves recorded from an earthquake or explosion, and they behave similar to sound waves. S-waves are secondary waves that travel in a snake-like side-to-side fashion. Surface waves are a combination of the two traveling much slower with much larger amplitude.

"Depending on the material the waves travel through, it may slow down or speed up the waves," said Savage, who notes that the model requires a great deal of computer power to run. "So when you look at the relative timing of the waves, you can tell what the material is that it's traveling through."

The improvements the researchers made to the model focused on long period surface waves and identifying the magnitude of a seismic event.

"The amplitude ratios of different wave types is a key factor in discriminating whether an event is manmade or not," Savage said.

The improved model is expected to be complete by next summer. The research was funded by he National Nuclear Security Administration and the Air Force Research Laboratory.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Scientists shed light on carbon's descent into the deep Earth
19.07.2017 | European Synchrotron Radiation Facility

nachricht Thawing permafrost releases old greenhouse gas
19.07.2017 | GFZ GeoForschungsZentrum Potsdam, Helmholtz Centre

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>