Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

URI geologist develops improved seismic model for monitoring nuclear explosions in Middle East

17.12.2010
Geologists from the University of Rhode Island and Princeton University, in collaboration with Lawrence Livermore National Laboratory, have taken an important step toward helping the United States government monitor nuclear explosions by improving a 3-dimensional model originally developed at Harvard University. The improvements make the model more accurate at detecting the location, source and depth of seismic activity.

The results of their research were presented today at a meeting of the American Geophysical Union in San Francisco.

The National Nuclear Security Administration uses numerous seismic models in its efforts to monitor the globe for underground nuclear explosions detonated by nations that seek to keep their nuclear activities undetected. But not only is it difficult to identify exactly where an explosion takes place, it is especially challenging to differentiate the seismic waves generated by nuclear explosions from those generated by earthquakes, volcanic activity and mine collapses.

"The goal is to build a model of the Earth that will locate seismic events and characterize those events precisely while reducing potential errors," said Brian Savage, URI assistant professor of geosciences.

The model spans the politically sensitive region from Turkey to India, including Iran, Iraq and Afghanistan, a region Savage describes as "tectonically complex."

Savage and his colleagues analyzed data from 200 earthquakes collected by 150 seismic stations in the region between 1990 and 2007. They compared the data with that from simulated earthquakes to identify deficiencies in the model, then propagated the simulated earthquakes in reverse to determine where to improve and update the model.

Different types of seismic waves travel in different ways and at different speeds. P-waves, for instance, are the first waves recorded from an earthquake or explosion, and they behave similar to sound waves. S-waves are secondary waves that travel in a snake-like side-to-side fashion. Surface waves are a combination of the two traveling much slower with much larger amplitude.

"Depending on the material the waves travel through, it may slow down or speed up the waves," said Savage, who notes that the model requires a great deal of computer power to run. "So when you look at the relative timing of the waves, you can tell what the material is that it's traveling through."

The improvements the researchers made to the model focused on long period surface waves and identifying the magnitude of a seismic event.

"The amplitude ratios of different wave types is a key factor in discriminating whether an event is manmade or not," Savage said.

The improved model is expected to be complete by next summer. The research was funded by he National Nuclear Security Administration and the Air Force Research Laboratory.

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>