Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Urbanization exposes French cities to greater seismic risk

07.03.2014

French researchers have looked into data mining to develop a method for extracting information on the vulnerability of cities in regions of moderate risk, creating a proxy for assessing the probable resilience of buildings and infrastructure despite incomplete seismic inventories of buildings. The research exposes significant vulnerability in regions that have experienced an "explosion of urbanization."

"Considering that the seismic hazard is stable in time, we observe that the seismic risk comes from the rapid development of urbanization, which places at the same site goods and people exposed to hazard" said Philippe Gueguen, co-author and senior researcher at Université Joseph Fourier in Grenoble, France. The paper appears today in the journal Seismological Research Letters (SRL).

Local authorities rely on seismic vulnerability assessments to estimate the probable damage on an overall scale (such as a country, region or town) and identify the most vulnerable building categories that need reinforcement. These assessments are costly and require detailed understanding of how buildings will respond to ground motion.

Old structures, designed before current seismic building codes, abound in France, and there is insufficient information about how they will respond during an earthquake, say authors. The last major earthquake in France, which is considered to have moderate seismic hazard, was the 1909 magnitude 6 Lambesc earthquake, which killed 42 people and caused millions of euros of losses in the southeastern region.

The authors relied on the French national census for basic descriptions of buildings in Grenoble, a city of moderate seismic hazard, to create a vulnerability proxy, which they validated in Nice and later tested for the historic Lambesc earthquake.

The research exposed the effects of the urbanization and urban concentrations in areas prone to seismic hazard.

"In seismicity regions similar to France, seismic events are rare and are of low probability. With urbanization, the consequences of characteristic events, such as Lambesc, can be significant in terms of structural damage and fatalities," said Gueguen. "These consequences are all the more significant because of the moderate seismicity that reduces the perception of risk by local authorities."

If the 1909 Lambesc earthquake were to happen now, write the authors, the region would suffer serious consequences, including damage to more than 15,000 buildings. They equate the likely devastation to that observed after recent earthquakes of similar sizes in L'Aquila, Italy and Christchurch, New Zealand.

Nan Broadbent | EurekAlert!
Further information:
http://www.seismosoc.org

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

25.09.2017 | Trade Fair News

Highest-energy cosmic rays have extragalactic origin

25.09.2017 | Physics and Astronomy

Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections

25.09.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>