Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ups and downs of biodiversity after mass extinction

21.12.2012
The climate after the largest mass extinction so far 252 million years ago was cool, later very warm and then cool again.

Thanks to the cooler temperatures, the diversity of marine fauna ballooned, as paleontologists from the University of Zurich have reconstructed. The warmer climate, coupled with a high CO2 level in the atmosphere, initially gave rise to new, short-lived species. In the longer term, however, this climate change had an adverse effect on biodiversity and caused species to become extinct.


Amonoids peaked earlier after the vast mass extiction.


Feeding apparatus (reconstruction) of a Conodont.

Until now, it was always assumed that it took flora and fauna a long time to recover from the vast mass extinction at the end of the Permian geological period 252 million years ago. According to the scientific consensus, complex ecological communities only began to reappear in the Middle Triassic, so 247 million years ago. Now, however, a Swiss team headed by paleontologist Hugo Bucher from the University of Zurich reveals that marine animal groups such as ammonoids and conodonts (microfossils) already peaked three or four million years earlier, namely still during the Early Triassic.

The scientists chart the temperature curves in detail in Nature Geoscience, demonstrating that the climate and the carbon dioxide level in the atmosphere fluctuated greatly during the Early Triassic and what impact this had on marine biodiversity and terrestrial plants.

Alternate cooler and very warm phases

For their climate reconstruction, Bucher and his colleagues analyzed the composition of the oxygen isotopes in conodonts, the remains of chordates that once lived in the sea. According to the study, the climate at the beginning of the Triassic 249 million years ago was cool. This cooler phase was followed by a brief very warm climate phase. At the end of the Early Triassic, namely between 247.9 and 245.9 million years ago, cooler conditions resumed.

Climate and carbon cycle influence biodiversity

The scientists then examined the impact of the climate on the development of flora and fauna. “Biodiversity increased most in the cooler phases,” explains paleontologist Bucher. “The subsequent extremely warm phase, however, led to great changes in the marine fauna and a major ecological shift in the flora.” Bucher and his team can reveal that this decline in biodiversity in the warm phases correlates with strong fluctuations in the carbon isotope composition of the atmosphere. These, in turn, were directly related to carbon dioxide gases, which stemmed from volcanic eruptions in the Siberian Large Igneous Province.

Species emerge and die out

Through the climatic changes, conodont and ammonoid faunae were initially able to recover very quickly during the Early Triassic as unusually short-lived species emerged. However, the removal of excess CO2 by primary producers such as algae and terrestrial plants had adverse effects in the long run: The removal of these vast amounts of organic matter used up the majority of the oxygen in the water. Due to the lack of oxygen in the oceans, many marine species died out. “Our studies reveal that greater climatic changes can lead to both the emergence and extinction of species. Thus, it is important to consider both extinction rates and the rate at which new species emerged,” says Bucher.

Bucher and his colleagues are convinced that climate changes and the emission of volcanic gases were key drivers of biotic recovery in the oceans during the Early Triassic: Cooler climate phases encourage biological diversification. Warmer climate phases and very high CO2 levels in the atmosphere, however, can have a harmful impact on biodiversity.

Literature:
Carlo Romano, Nicolas Goudemand, Torsten W. Vennemann, David Ware, Elke Schneebeli-Hermann, Peter A. Hochuli, Thomas Brühwiler, Winand Brinkmann, Hugo Bucher. Climatic and biotic upheavals following the end-Permian mass extinction. Nature Geoscience. DOI: 10.1038/NGEO1667
Contact:
Prof. Dr. Hugo Bucher
University of Zurich
Paleontological Institute and Museum
Tel. +41 44 634 23 44
E-Mail: hugo.fr.bucher@pim.uzh.ch

Beat Müller | idw
Further information:
http://www.uzh.ch

More articles from Earth Sciences:

nachricht Clouds and climate in the pre-industrial age
30.05.2016 | Goethe-Universität Frankfurt am Main

nachricht Researchers find higher than expected carbon emissions from inland waterways
25.05.2016 | Washington State University

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>