Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Upgrade to Mars rovers could aid discovery on more distant worlds

10.09.2013
Smart as the Mars Curiosity mission has been about landing and finding its own way on a distant world, the rover is pretty brainless when it comes to doing the science that it was sent 567 million kilometers to carry out. That has to change if future rover missions are to make discoveries further out in the solar system, scientists say.

The change has now begun with the development of a new camera that can do more than just take pictures of alien rocks – it also thinks about what the pictures signify so the rover can decide on its own whether to keep exploring a particular site, or move on.


Caption: Scientists test TextureCam in the Mojave Desert in California. This advanced camera system for planetary rovers can scientifically assess images of rocks itself, whereas current rovers require scientists on Earth to do the analysis. Credit: Kiri Wagstaff

"We currently have a micromanaging approach to space exploration," said senior researcher Kiri Wagstaff, a computer scientist and geologist at the Jet Propulsion Laboratory (JPL) in Pasadena, Calif. "While this suffices for our rovers on Mars, it works less and less well the further you get from the Earth. If you want to get ambitious and go to Europa and asteroids and comets, you need more and more autonomy to even make that feasible."

To help future rover and space missions spend less time waiting for instructions from Earth, Wagstaff and her colleagues developed an advanced two-lens camera, called TextureCam. Although Curiosity and other rovers can already, on their own, distinguish rocks from other objects in photos they take, they must send images all the way to Earth for scientific analysis of a particular rock. This process costs time and limits the potential scientific scope of rovers' missions. TextureCam can do the analysis by itself.

The work is detailed in Geophysical Research Letters, a publication of the American Geophysical Union.

Micromanaging on Mars

At the beginning of each Martian day, called a sol, scientists on Earth upload an agenda to a Mars rover. This scientific schedule details nearly all of the rover's movements: roll forward so many meters, snap a photo, scoop a soil sample, run rudimentary tests on it and move on.

Even moving at light speed, instructions from Earth take about 20 minutes to reach the surface of Mars. This 40-minute roundtrip makes real-time control of the rover impossible. On Jupiter's moon Europa, where astrobiologists suspect extraterrestrial life could exist, the delay balloons to over 90 minutes.

"Right now for the rovers, each day is planned out on Earth based on the images the rover took the previous day," said Wagstaff. "This is a huge limitation and one of the main bottlenecks for exploration with these spacecraft."

While researchers recently introduced autonomous navigation to the Curiosity rover, its scientific objectives are still determined by the images it transmits back to Earth. Mars-to-Earth communication costs precious power and trickles at a bandwidth of around 0.012 megabits per second—about 250 times slower than a 3G cellphone network.

Mars orbiters can help speed up the data transfer rate, though the satellites only orbit into correct alignment a few short minutes each day. Curiosity's constrained connection limits the number of Martian images it can send back to Earth.

"If the rover itself could prioritize what's scientifically important, it would suddenly have the capability to take more images than it knows it can send back. That goes hand in hand with its ability to discover new things that weren't anticipated," said Wagstaff.

Recognizing rocks

When TextureCam's stereo cameras snap 3D images, a special processor separate from the rover's main computer analyzes the pictures. By recognizing texturess in the photos, the processor distinguishes between sand, rocks and sky. The processor then uses the size and distance to rocks in the picture to determine if any are scientifically important layered rocks.

The system's built-in processor avoids straining the rover's busy main processor. When TextureCam spots an interesting rock, it can either upload a high-resolution image back to Earth or send a message to the main processor to move toward the rock and take a sample.

"You do have to provide it with some initial training, just like you would with a human, where you give it example images of what to look for," said Wagstaff. "But once it knows what to look for, it can make the same decisions we currently do on Earth."

From deserts to planets

In its infancy, Wagstaff and her colleagues trained TextureCam using real Martian images taken by previous rover missions. TextureCam's training worked similarly to the facial unlock feature available on smartphones and computers: The more examples of interesting rocks it was shown, the better it became at identifying the common features that made the rocks scientifically important. Recently TextureCam was successfully run through its paces in the rocky landscape of the Mojave Desert in Southern California—a useful analog for the Martian surface.

Wagstaff predicts TextureCam could greatly benefit future Mars rovers, such as the Mars 2020 rover, as well as missions to other planets and moons.

Notes for Journalists: Journalists and public information officers (PIOs) of educational and scientific institutions who have registered with AGU can download a PDF copy of this early view article by clicking on this link: http://onlinelibrary.wiley.com/doi/10.1002/grl.50817/abstract

Or, you may order a copy of the final paper by emailing your request to Thomas Sumner at tsumner@agu.org. Please provide your name, the name of your publication, and your phone number.

Neither the paper nor this press release is under embargo.

Title:

"Smart, texture-sensitive instrument classification for in situ rock and layer analysis"

Authors:
K. L. Wagstaff and D. R. ThompsonMachine Learning and Instrument Autonomy, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;W. Abbey and A. AllwoodPlanetary Chemistry and Astrobiology, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;D. L. BekkerInstrument Flight Software and Ground Support Equipment, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;N. A. CabrolSpace Science Division, NASA Ames Research Center/SETI Institute, Moffett Field, California, USA;T. FuchsMobility and Robotic Systems, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA;K. OrtegaDistributed and Real-Time Systems, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA.

Contact information for the authors:

Kiri Wagstaff, Phone: +1 (626) 354-7131, Email: kiri.wagstaff@jpl.nasa.gov

Thomas Sumner | EurekAlert!
Further information:
http://www.agu.org
http://www.agu.org/news/press/pr_archives/2013/2013-43.shtml

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>