Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual microbial ropes grow slowly in cave lake

23.12.2008
Deep inside the Frasassi cave system in Italy and more than 1,600 feet below the Earth's surface, divers found filamentous ropes of microbes growing in the cold water, according to a team of Penn State researchers.
"Sulfur caves are a microbiology paradise. Many different types of organisms live in the caves and use the sulfur," says Jennifer L. Macalady, assistant professor of geosciences. "We are trying to map which organisms live where in the caves and how they correspond to the geochemical environment."

In this process, Macalady and her team discovered a previously unknown form of biofilm growing in the oxygen-deficient portion of the lake.

"The cave explorers had seen these strange biofilms," says Macalady. "So we asked them if they could get us a sample."

The Frasassi cave system is located north of Rome and south of Venice in the Marche region. These limestone caves are like New Mexico's Carlsbad Caverns and Lechuguilla Cave, but in those caves, sulfur entered the caves from oil and gas reserves, while in Italy, the sulfur source is a thick gypsum layer below. Having sulfur in the environment allows sulfur-using organisms to grow.

The researchers received about the weight of two paper clips of the strange rope to analyze. They reported the results of their DNA sequencing today (Dec. 19) at the American Geophysical Union Conference in San Francisco.

"We did not retrieve any sequences for known methane-producing organisms or known methane oxidizers," says Macalady.

The researchers did find that about half the organisms were bacteria and the other half belonged to another single-celled group of organisms called archaea. The researchers identified half the bacteria as sulfate reducers, bacteria that convert sulfates into sulfide to obtain energy. Of the archaea, more than half were associated with organisms usually found in deep sea sediments and referred to as marine benthic group D (MBG-D). Researchers do not know how MBG-D organisms obtain energy, although they are always found in oxygen-less locations.

The 2 inches of ropey biofilm under study was two-tenth of an inch in diameter. Microscopic images of the rope show that some of the single-celled organisms have shapes that intertwine with each other and some have tendrils.

"We do not know why the have the shape they do," says Macalady. "Microorganisms in them likely secrete some sticky goo, an extra-cellular polymeric substance -- slime that holds them together."

What the researchers do know is that the location where these ropes grow is very low in available energy -- considered an energy-limiting environment. The location can support only very slow growth. The ropes range in length from one to two meters, and radiocarbon dating places them at 1,000 to 2,000 years old.

"Previous researchers have estimated the rate of cell growth in some deep sea sediments to a cell division every thousand years," says Macalady.

Microscopic images of the rope using three dyes, one for DNA, one for bacteria and one for archaea, show very little activity in the bacteria or archaea, probably because the dyes highlight ribosomes and they only exist in a cell when it is actively metabolizing.

The researchers, who include Macalady; Daniel S. Jones and Rebecca R. McCauley, graduate students, geosciences; Irene Schaperdoth, research associate; and Dan Bloom, undergraduate honors student in astrobiology, are hoping to obtain more microbial rope samples this summer. They will work with divers to get samples from the deepest and shallowest ends of the ropes in order to find clues about how they grow.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht Ice cave in Transylvania yields window into region's past
28.04.2017 | National Science Foundation

nachricht Citizen science campaign to aid disaster response
28.04.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>