Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual greenhouse gases may have raised ancient Martian temperature

25.11.2013
Much like the Grand Canyon, Nanedi Valles snakes across the Martian surface suggesting that liquid water once crossed the landscape, according to a team of researchers who believe that molecular hydrogen made it warm enough for water to flow.

The presence of molecular hydrogen, in addition to carbon dioxide and water, could have created a greenhouse effect on Mars 3.8 billion years ago that pushed temperatures high enough to allow for liquid water, the researchers state in the current issue of Nature Geoscience.


This is a split panel comparing a section of Arizona's Grand Canyon on left against a section of Mars' Nanedi Valles on right. Nanedi Valles is located in the Lunae Palus quadrangle of Mars. The northern part of the Nanedi Valles image shows a river once cut through it, similar to the one flowing through the Grand Canyon. Although this section of Nanedi Valles is nearly 2.5 km in width, other portions are at least twice as wide. Slight morphologic differences between the two canyons are attributable to the great age differences between the regions and the correspondingly higher degree of erosion on Mars.

Credit: Penn State

The team includes Ramses M. Ramirez, a doctoral student working with James Kasting, Evan Pugh Professor of Geosciences, Penn State.

Previous efforts to produce temperatures warm enough to allow for liquid water used climate models that include only carbon dioxide and water and were unsuccessful. The researchers used a model to show that an atmosphere with sufficient carbon dioxide, water and hydrogen could have made the surface temperatures of Mars warm to above freezing.

Those above-freezing temperatures would allow liquid water to flow across the Martian surface over 3.8 billion years ago and form the ancient valley networks, such as Nanedi Valles, much the way sections of the Grand Canyon snake across the western United States today.

"This is exciting because explaining how early Mars could have been warm and wet enough to form the ancient valleys had scientists scratching their heads for the past 30 years," said Ramirez. "We think we may have a credible solution to this great mystery."

The researchers note that one alternative theory is that the Martian valleys formed after large meteorites bombarded the planet, generating steam atmospheres that then rained out. But this mechanism cannot produce the large volumes of water thought necessary to carve the valleys.

"We think that there is no way to form the ancient valleys with any of the alternate cold early Mars models," said Ramirez. "However, the problem with selling a warm early Mars is that nobody had been able to put forth a feasible mechanism in the past three decades. So, we hope that our results will get people to reconsider their positions."

Ramirez and post-doctoral researcher Ravi Kopparapu co-developed a one-dimensional climate model to demonstrate the possibility that the gas levels from volcanic activity could have created enough hydrogen and carbon dioxide to form a greenhouse and raise temperatures sufficiently to allow for liquid water. Once they developed the model, Ramirez ran the model using new hydrogen absorption data and used it to recreate the conditions on early Mars, a time when the sun was about 30 percent less bright than it is today.

"It's kind of surprising to think that Mars could have been warm and wet because at the time the sun was much dimmer," Ramirez said.

Mars' mantle appears to be more reduced than Earth's, based on evidence from Shergotty, Nahkla, and Chassigny meteorites, Martian meteorites named for the towns near which they were found. A more reduced mantle outgasses more hydrogen relative to water, thus bolstering the hydrogen greenhouse effect.

"The hydrogen molecule is symmetric and appears to be quite boring by itself," said Ramirez. "However, other background gases, such as carbon dioxide, can perturb it and get it to function as a powerful greenhouse gas at wavelengths where carbon dioxide and water don't absorb too strongly. So, hydrogen fills in the gaps left by the other two greenhouse gases."

In addition to Ramirez, Kopparapu and Kasting, researchers on the project include Michael E. Zugger, senior research engineer, Applied Research Laboratory, Penn State; Tyler D. Robinson, University of Washington; and Richard Freedman, SETI Institute.

Support for the research comes from NASA Astrobiology Institute's Virtual Planetary Laboratory.

A'ndrea Elyse Messer | EurekAlert!
Further information:
http://www.psu.edu

More articles from Earth Sciences:

nachricht How is climate change affecting fauna in the Arctic?
22.05.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Sea level as a metronome of Earth's history
19.05.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>