Unlocking the secrets of the seafloor: The future of scientific ocean drilling

The scientific community envisions that this program will succeed the current Integrated Ocean Drilling Program (IODP), which ends in 2013. The outcome of the Bremen meeting will result in a new science plan, enabling scientific ocean drilling to take on a central role in environmental understanding and stewardship of our planet in the 21st century.

“This is a truly historic meeting”, said the IODP vice-president Hans Christian Larsen. “Never before have so many scientists from the ocean drilling community met in one place. We were especially pleased to see so many young scientists – these researchers represent the next generation who will lead the new ocean drilling programme, which is expected to start in 2013.”

The 600 scientists attending the meeting discussed both established and new research fields, such as the co-evolution of life and the planet, processes in the Earth's core and mantle, climate change, and new approaches to capture and store the greenhouse gas carbon dioxide (CO2) in the Earth's crust. Potential predictability of geohazards such as volcanic eruptions, earthquakes and tsunamis were also addressed, in part linked to development of sub-seafloor laboratories as much as 6 km deep into the seabed.

Ocean drilling has already revealed many exciting discoveries such as confirmation of microbial life up to 1,600 metres below the seafloor in rocks as old as 111 million years. Scientists have now started to explore this 'deep biosphere', which may have a biomass equal to that of the tropical rain forest. But many critical questions remain unanswered: How did these ecosystems develop? Can they tell us about the potential for life on other planets? Can marine microbial communities play a role in the development of new biotechnologies and pharmaceuticals?

During his plenary talk, Alan Mix of Oregon State University pointed out that the current level of CO2 injection into Earth's atmosphere soon will bring the CO2 concentration to a level not seen for many million of years and on par with that of severe greenhouse conditions of the geological past. Only ocean drilling can provide records of the environment that ruled during these warm episodes during Earth's history, and investigate the true sensitivity of the climate to changes in CO2 concentration.

Ocean research drilling started more than four decades ago as one of the most ambitious projects in the history of marine science. Since then, about 200 expeditions have been completed and more than 350 kilometres of core have been recovered, documenting a much more dynamic Earth and climate than was previously thought to exist. In recent years, IODP, using multiple drilling platforms, has drilled in extremely challenging environments, such as shallow water carbonate reef systems very sensitive to sea-level change and in the high Arctic, the last frontier area of ocean exploration on the Earth. Today, even deep drilling, up to ten kilometres beneath the drillship is possible.

These investigations have revolutionised the understanding of how the Earth works. A future ocean drilling programme will play a pivotal role in enhancing this knowledge by using new technologies and installation of permanent laboratories deep below the ocean floor. As Alan Mix told the conference participants “The beginning is now!”

Media Contact

Raesah Et'Tawil EurekAlert!

More Information:

http://www.iodp.org

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Properties of new materials for microchips

… can now be measured well. Reseachers of Delft University of Technology demonstrated measuring performance properties of ultrathin silicon membranes. Making ever smaller and more powerful chips requires new ultrathin…

Floating solar’s potential

… to support sustainable development by addressing climate, water, and energy goals holistically. A new study published this week in Nature Energy raises the potential for floating solar photovoltaics (FPV)…

Skyrmions move at record speeds

… a step towards the computing of the future. An international research team led by scientists from the CNRS1 has discovered that the magnetic nanobubbles2 known as skyrmions can be…

Partners & Sponsors