Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Toronto study shows disparity of effect of climate change on UV radiation

17.09.2009
Physicists at the University of Toronto have discovered that changes in the Earth’s ozone layer due to climate change will reduce the amount of ultraviolet (UV) radiation in northern high latitude regions such as Siberia, Scandinavia and northern Canada. Other regions of the Earth, such as the tropics and Antarctica, will instead face increasing levels of UV radiation.

“Climate change is an established fact, but scientists are only just beginning to understand its regional manifestations,” says Michaela Hegglin, a postdoctoral fellow in the Department of Physics, and the lead author of the study published in Nature Geoscience on September 6.

Using a sophisticated computer model, Hegglin and U of T physicist Theodore Shepherd determined that 21st-century climate change will alter atmospheric circulation, increasing the flux of ozone from the upper to the lower atmosphere and shifting the distribution of ozone within the upper atmosphere. The result will be a change in the amount of UV radiation reaching the Earth’s surface which varies dramatically between regions: e.g. up to a 20 per cent increase in UV radiation over southern high latitudes during spring and summer, and a nine per cent decrease in UV radiation over northern high latitudes, by the end of the century.

While the effects of increased UV have been widely studied because of the problem of ozone depletion, decreased UV could have adverse effects too, e.g. on vitamin D production for people in regions with limited sunlight such as the northern high latitudes.

“Both human and ecosystem health are affected by air quality and by UV radiation,” says Shepherd. “While there has been much research on the impact of climate change on air quality, our work shows that this research needs to include the effect of changes in stratospheric ozone. And while there has been much research on the impact of ozone depletion on UV radiation and its impacts on human and ecosystem health, the notion that climate change could also affect UV radiation has not previously been considered. This adds to the list of potential impacts of climate change, and is especially important for Canada as northern high latitudes are particularly affected.”

The research was funded by the Canadian Foundation for Climate and Atmospheric Sciences through the C-SPARC project. The C-SPARC project is a national collaboration between Environment Canada and several Canadian universities.

MEDIA CONTACTS:

Michaela Hegglin
Department of Physics
University of Toronto
416-732-6034
michaela@atmosp.physics.utoronto.ca
Theodore (Ted) Shepherd
Department of Physics
University of Toronto
416-978-2931
tgs@atmosp.physics.utoronto.ca
Sean Bettam
Communications, Faculty of Arts & Science
University of Toronto
416-946-7950
s.bettam@utoronto.ca

Sean Bettam | EurekAlert!
Further information:
http://www.utoronto.ca

More articles from Earth Sciences:

nachricht Early organic carbon got deep burial in mantle
25.04.2017 | Rice University

nachricht New atlas provides highest-resolution imagery of the Polar Regions seafloor
25.04.2017 | British Antarctic Survey

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

DGIST develops 20 times faster biosensor

24.04.2017 | Physics and Astronomy

Nanoimprinted hyperlens array: Paving the way for practical super-resolution imaging

24.04.2017 | Materials Sciences

Atomic-level motion may drive bacteria's ability to evade immune system defenses

24.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>