Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Pittsburgh Geologists Map Prehistoric Climate Changes in Canada’s Yukon Territory

09.05.2012
Pitt study one of many across the nation focused on understanding Arctic region’s climate changes

Researchers at the University of Pittsburgh have joined an international group of scientists to study past climate changes in the Arctic.

Comprising geologists from Pitt’s Department of Geology and Planetary Science, the team has analyzed sedimentary and geochemical records of water-level changes in Rantin Lake, located in the boreal forest of Canada’s southeastern Yukon Territory.

The results were published online in the April issue of Journal of Paleolimnology as one of 18 articles dedicated to reconstructing Arctic lake sediments climate and environmental changes during the Holocene (about 12,000 years before present day).

“During the last 10,000 years, there have been certain times in which rapid climate change events occurred,” said David Pompeani, lead author and a Pitt PhD geology student. “By analyzing Rantin Lake, we’ve contributed a piece of the puzzle toward mapping the timing and magnitude of these prehistoric events throughout the Arctic.”

Rantin Lake is part of a watershed containing a series of small lakes hydrologically connected through groundwater flow. The regional climate is subarctic and characterized by warm, wet summers and dry, cold winters. The lake is located at 60 degrees north in the Canadian Arctic, only 30 degrees away from the North Pole, where climate change is expected to be amplified.

In July 2006, the Pitt team—including Mark Abbott, associate professor of geology and planetary science, and Byron Steinman, a former PhD geology student (now a postdoctoral researcher at Penn State University)—collected two sediment cores from the lake for analysis. The sediment cores were split and analyzed for paleoclimate proxy indicators, including geochemical composition, sedimentary structure, and macrofossil content (that which is visible without a microscope). The amount of water in a lake is directly related to its depth. Therefore, a loss in water during droughts is recorded by drop in lake levels, whereas wet periods are characterized by deep waters.

Using these proxy indicators, the researchers were able to make inferences about past variations in the balance between precipitation and evaporation in the southern Yukon. A comparison of the lake-level proxies with a previously developed fossil pollen record from the same lake found that rapid vegetation changes over the Holocene also occurred during shifts in the precipitation/evaporation balance, suggesting hydrologic conditions played an integral role in the evolution of the Yukon’s ecosystem. The development of unique shallow-water sediment at the deep-water core site indicated that lake levels dropped significantly during a “megadrought” in the early Holocene.

“About 8,400 years ago, the lake almost dried out,” said Pompeani. “We documented the timing of this drought and studied its transition to conditions more typical of what we observed in the late Holocene.”

Pitt’s study, says Pompeani, contributes to the long-term perspective on natural climate variability that is needed to understand historically unprecedented changes now occurring in the Arctic. Rapid changes in the Arctic climate system that occurred in the relatively recent past can be compared with climate models to improve the understanding of the processes responsible for such nonlinear changes.

Funding for this project was provided by the National Science Foundation.

The Holocene climate project focuses on climate records from the last 8,000 years, including two focus regions: eastern Beringia and the northwest Atlantic. For more information on the Holocene climate project, visit www.arcus.org/synthesis8k/index.php

B. Rose Huber | EurekAlert!
Further information:
http://www.pitt.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>