Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


University of Pittsburgh Geologists Map Prehistoric Climate Changes in Canada’s Yukon Territory

Pitt study one of many across the nation focused on understanding Arctic region’s climate changes

Researchers at the University of Pittsburgh have joined an international group of scientists to study past climate changes in the Arctic.

Comprising geologists from Pitt’s Department of Geology and Planetary Science, the team has analyzed sedimentary and geochemical records of water-level changes in Rantin Lake, located in the boreal forest of Canada’s southeastern Yukon Territory.

The results were published online in the April issue of Journal of Paleolimnology as one of 18 articles dedicated to reconstructing Arctic lake sediments climate and environmental changes during the Holocene (about 12,000 years before present day).

“During the last 10,000 years, there have been certain times in which rapid climate change events occurred,” said David Pompeani, lead author and a Pitt PhD geology student. “By analyzing Rantin Lake, we’ve contributed a piece of the puzzle toward mapping the timing and magnitude of these prehistoric events throughout the Arctic.”

Rantin Lake is part of a watershed containing a series of small lakes hydrologically connected through groundwater flow. The regional climate is subarctic and characterized by warm, wet summers and dry, cold winters. The lake is located at 60 degrees north in the Canadian Arctic, only 30 degrees away from the North Pole, where climate change is expected to be amplified.

In July 2006, the Pitt team—including Mark Abbott, associate professor of geology and planetary science, and Byron Steinman, a former PhD geology student (now a postdoctoral researcher at Penn State University)—collected two sediment cores from the lake for analysis. The sediment cores were split and analyzed for paleoclimate proxy indicators, including geochemical composition, sedimentary structure, and macrofossil content (that which is visible without a microscope). The amount of water in a lake is directly related to its depth. Therefore, a loss in water during droughts is recorded by drop in lake levels, whereas wet periods are characterized by deep waters.

Using these proxy indicators, the researchers were able to make inferences about past variations in the balance between precipitation and evaporation in the southern Yukon. A comparison of the lake-level proxies with a previously developed fossil pollen record from the same lake found that rapid vegetation changes over the Holocene also occurred during shifts in the precipitation/evaporation balance, suggesting hydrologic conditions played an integral role in the evolution of the Yukon’s ecosystem. The development of unique shallow-water sediment at the deep-water core site indicated that lake levels dropped significantly during a “megadrought” in the early Holocene.

“About 8,400 years ago, the lake almost dried out,” said Pompeani. “We documented the timing of this drought and studied its transition to conditions more typical of what we observed in the late Holocene.”

Pitt’s study, says Pompeani, contributes to the long-term perspective on natural climate variability that is needed to understand historically unprecedented changes now occurring in the Arctic. Rapid changes in the Arctic climate system that occurred in the relatively recent past can be compared with climate models to improve the understanding of the processes responsible for such nonlinear changes.

Funding for this project was provided by the National Science Foundation.

The Holocene climate project focuses on climate records from the last 8,000 years, including two focus regions: eastern Beringia and the northwest Atlantic. For more information on the Holocene climate project, visit

B. Rose Huber | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>