Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Miami-led Team to Study Climatically Important Agulhas Current Using $3.4 Million NSF Grant

01.07.2009
Three-years of in situ measurements, combined with along-track satellite data to create long-term index of Agulhas Current transport; study possible impact current may have had on end of last Ice Age

The U.S. National Science Foundation (NSF) announced that it is funding a study with the goal of building a multi-decadal time series of Agulhas Current volume transport, which will contribute to the Global Ocean Observing System.

Led by Principal Investigator, Lisa Beal, Ph.D. of the University of Miami’s Rosenstiel School of Marine and Atmospheric Science, the international team will include scientists from the National Oceanography Centre (Southampton, United Kingdom) and the University of Cape Town (Cape Town, South Africa).

The Agulhas Current is the “Gulf Stream” of the southern Indian Ocean, carrying warm and salty tropical waters southward along the east coast of Africa as a narrow, fast jet. At the tip of Africa the Agulhas retroflects, looping around to eventually flow eastward toward Australia. This retroflection is unstable and regularly sheds large Agulhas Rings, which carry Indian Ocean waters into the South Atlantic.

“We anticipate this study will shed light on the seasonal to decadal variability of the Agulhas,“ said Beal. “Locally, the warm waters of the Agulhas effect African rainfall rates, and globally, there is paleo-oceanographic evidence suggesting that changes in the amount of Agulhas water reaching the Atlantic may have triggered the end of the last ice age.” In addition, Beal believes there may be other, so far unstudied climatic impacts such as heat transport into the Southern Ocean via the unstable retroflection.

The Agulhas Current Time-series (ACT) project will be conducted in two phases. The first requires the deployment of an array of instruments across the Agulhas Current and along an altimeter ground track, to obtain a three-year series of transport data. Using the in situ measurements gathered, the team will embark on the second phase, to correlate the along-track satellite altimeter data with measured transports to produce a proxy for Agulhas Current transport, which can be extended forwards and backwards in time.

The ACT mooring array will be positioned offshore and to the southwest of East London, South Africa, in up to 4700 m of water. The array will consist of seven full-depth current meter moorings, spanning the mean width of the Agulhas Current, one tide gauge, plus four pressure gauge-equipped inverted echo-sounders (C-PIES) to cover the Current’s offshore meandering events cost-effectively.

On each full-depth mooring upward-looking profiling current meters will measure the top 350 m of the water column, where velocities are strongest. Below these, up to six single-point current meters will measure the rest of the water column. All current meters are acoustic, with no moving parts, measuring velocity using the principle of Doppler shift, whereby the frequency of a sound wave changes as it reflects off a moving particle in the ocean.

Offshore recirculations and meandering events will be captured using the C-PIES, which can give information about the transport over the upper 2000 m, when combined with local hydrographic data collected during each mooring cruise. The shallow-water tide gauge will be placed on the continental shelf, allowing for an hourly record of sea surface height shoreward of the Agulhas Current.

The initial deployment cruise is scheduled to leave Cape Town, South Africa, in March 2010, aboard a U.S. University-National Oceanographic Laboratory System (UNOLS) research vessel. The ACT array will be in the water until approximately March 2013.

“Ultimately, a twenty year proxy of Agulhas Current transport will provide an important climate index for the Indian Ocean, which can be linked to other climate indices, such as the Atlantic Meridional Overturning, and hopefully improve our predictive capabilities for the future,” Beal added.

The University of Miami is the largest private research institution in the southeastern United States. The University’s mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives.

Founded in the 1940’s, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Barbra Gonzalez
Communications Director
University of Miami
Rosenstiel School of Marine & Atmospheric Science 4600 Rickenbacker Causeway Virginia Key, FL 33149
Tel: 305-421-4704
Fax: 305-421-4711

Barbra Gonzalez | Research asia research news
Further information:
http://www.rsmas.miami.edu
http://www.researchsea.com

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>