Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Leicester geologists demonstrate extent of ancient ice age

18.06.2009
Team investigates the climate of planet Earth 440 million years ago
Geologists at the University of Leicester have shown that an ancient Ice Age, once regarded as a brief 'blip', in fact lasted for 30 million years.

They have published their findings and are due to discuss them at a public lecture at the University on Wednesday June 17.

Their research suggests that during this ancient Ice Age, global warming was curbed through the burial of organic carbon that eventually lead to the formation of oil – including the 'hot shales' of north Africa and Arabia which constitute the world's most productive oil source rock.

This ice age has been named 'the Early Palaeozoic Icehouse' by Dr Alex Page and his colleagues in a paper published as part of a collaborative Deep Time Climate project between the University of Leicester and British Geological Survey.

The Ice Age occurred in the Ordovician and Silurian Periods of geological time (part of the Early Palaeozoic Era), an interval that witnessed a major diversification of early marine animals including trilobites and primitive fish as well as the emergence of the first land plants.

The Early Palaeozoic climate had long been considered characterised by essentially greenhouse conditions with elevated atmospheric CO2 and warm temperatures extending to high latitudes, and only brief snaps of frigid climate. However, during his doctoral studies in the internationally ¬renowned Palaeobiology Research Group of the University of Leicester, Department of Geology, Alex Page and his colleagues Jan Zalasiewicz and Mark Williams demonstrated how the ice age was probably of much longer duration.

The team demonstrated that the Late Ordovician and Early Silurian Epochs were characterised by widespread ice formation, with changes in the extent of continental glaciation resulting in rapid sea¬ level changes around the globe.

They compared evidence of sea¬ level change from the rock record of ancient coastlines with evidence of sediments being deposited by glacial meltwaters or ice¬rafting at high latitudes, and with chemical indicators of temperature in the strata.

The team showed that although the Early Palaeozoic Icehouse was of similar extent and duration to the modern ice age, the workings of the carbon cycle appeared markedly different to that of the present day. Unlike the modern oceans, the oceans of the Early Palaeozoic were often oxygen-starved 'dead zones' leading to the burial of plankton-derived carbon in the sea floor sediments. The strata produced in this way include the 'hot shales' of north Africa and Arabia which constitute the world's most productive oil source rock. In fact, the burial of organic carbon derived from fossil plankton may have served to draw down CO2 from the atmosphere to promote cooling during the Early Palaeozoic Icehouse.

Page commented: "These fossil fuel-¬rich deposits formed during relatively warmer episodes during the Early Palaeozoic Icehouse when the partial melting of ice sheets brought about rapid sea ¬level rise. This melt¬water may have bought a massive influx of nutrients into the surface waters, allowing animals and algae to thrive and bloom in the plankton, but also altered ocean circulation, creating oxygen¬-poor deep waters which facilitated the preservation of fragile, carbonaceous planktonic fossils. The deglacial outwash formed a less dense, low¬ salinity 'lid' on the oceans preventing atmospheric oxygen penetrating to the seafloor. The absence of oxygen under such conditions served to shut down decay accounting for the preservation of these fossils."

Page added that the burial of oil shales in deglacial anoxia "may have been a negative feedback mechanism that prevented runaway warming, meaning that in the Early Palaeozoic Icehouse at least, processes eventually leading to oil formation may have been the solution to the greenhouse effect."

Alex Page's research will be presented at the Doctoral Inaugural Lectures being held in the Ken Edwards Lecture Theatre 3, University of Leicester. Lecture time: 5.30pm-6.30pm on Wednesday June 17.

Alex Page | EurekAlert!
Further information:
http://www.cam.ac.uk

Further reports about: AGE Arabia CO2 Lecture Ordovician Palaeozoic crystalline dead zone ice age ice sheet icehouse surface water

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>