Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Ocean Scientists Shed New Light on Mariana Trench

07.02.2012
An ocean mapping expedition has shed new light on deepest place on Earth, the 2,500-kilometer long Mariana Trench in the western Pacific Ocean near Guam.

Using a multibeam echo sounder, state-of-the-art equipment for mapping the ocean floor, scientists from the University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center found four “bridges” spanning the trench and measured its deepest point with greater precision than ever before.

Research professor James Gardner and affiliate professor Andrew Armstrong, both of UNH’s Center for Coastal and Ocean Mapping/UNH-NOAA Joint Hydrographic Center (CCOM/JHC), presented their findings at the recent American Geophysical Union meeting in San Francisco, the world’s largest annual meeting of Earth and planetary scientists.

Mapping the entire Mariana Trench – approximately 400,000 square kilometers -- from August through October 2010, the researchers discovered four bridges spanning the trench and rising as high as 2,500 meters above its floor. While satellite images had suggested the trench might be spanned by one such ridge, Gardner says the mapping mission confirmed the existence of four such features. “That got me excited,” he says.

The ridges are being formed as the 180-million-year-old Pacific and far younger Philippine tectonic plates collide. Because the ocean’s crust cools as it ages, “the Pacific crust is much, much older, so it’s diving underneath the Philippine plate,” Gardner says. As seamounts on the Pacific plate are pulled beneath the Philippine plate, they are compacted against the wall of the trench, forming these ridges.

“It’s incredibly complex geology. These seamounts haven’t been completely subducted, they’re getting jammed up against the plate,” Gardner says. He surmises that the bridges are related to earthquake subduction zones, such as the one that caused the March 2011 earthquake in Japan.

The expedition also yielded the most precise measurement yet of Challenger Deep, the trench’s (and the Earth’s) deepest point, finding it to be 10,994 meters deep, plus or minus 40 meters. Calculated from thousands of depth soundings as well as detailed analysis of how the how the water column can alter the echo sounding signals, the new measurement is similar to other claims of the Challenger Deep’s depth, some of which are deeper.

“When you’re dealing with something that’s 11 kilometers deep, you have to deal with inherent uncertainties in the system,” says Gardner, noting that Challenger Deep is deeper than Mount Everest is high.

Multibeam echo sounders measure depth by sending sound energy to the ocean floor then analyzing the returning signal. Mounted beneath a ship, the instruments produce a fan-shaped swath of coverage of the seafloor. The resolution of the resulting images, at one pixel to every 100 meters, is far more precise than other earlier measurement systems. Hydrographers and ocean mappers such as Armstrong and Gardner describe the process of mapping an area as like “mowing the lawn,” making overlapping tracks over the area in question.

This mission to the Mariana Trench, the third and fourth cruises to that area by UNH scientists, was undertaken to gather data that can be used to support an extended continental shelf under Article 76 of the United Nations Convention of the Law of the Sea (UNCLOS). All data are publicly available on the CCOM website: www.ccom.unh.edu.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,200 undergraduate and 2,300 graduate students.

Images available to download:
http://www.unh.edu/news/cj_nr/2012/feb/ccom-depth.jpg
Map view of bathymetry of southern Mariana Trench Challenger Deep area. Arrow points to circle that identifies the location of the deepest sounding in the trench (10,994 meters). White contours are 10,000-meter isobath.
http://www.unh.edu/news/cj_nr/2012/feb/ccom-bridges.jpg
Perspective view of bathymetry looking at the guyots and ridge approaching the Mariana Trench. Vertical exaggeration 5x.
http://www.unh.edu/news/cj_nr/2012/feb/ccom-dutton.jpg
Perspective view of bathymetry of Dutton Ridge as it is being subducted into the Mariana Trench. Numerous extensional faults (red lines) disrupt the seafloor and the ridge proper. Vertical exaggeration 5x.

Credit all images: University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center

Beth Potier | EurekAlert!
Further information:
http://www.unh.edu

More articles from Earth Sciences:

nachricht Impacts of mass coral die-off on Indian Ocean reefs revealed
21.02.2017 | University of Exeter

nachricht How much biomass grows in the savannah?
16.02.2017 | Friedrich-Schiller-Universität Jena

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>