Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Ocean Mappers Discover Seamount in Pacific Ocean

04.09.2014

University of New Hampshire scientists on a seafloor mapping mission have discovered a new seamount near the Johnson Atoll in the Pacific Ocean. The summit of the seamount rises 1,100 meters from the 5,100-meter-deep ocean floor.

The seamount was discovered in August when James Gardner, research professor in the UNH-NOAA Center for Coastal and Ocean Mapping/Joint Hydrographic Center, was leading a mapping mission aimed at helping delineate the outer limits of the U.S. continental shelf.


Three-dimensional view of the southwest side of the seamount with 23-degree slopes.

Credit: University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center.


Three-dimensional view of the seamount area (southeast point of view and 3.5x vertical exaggeration) showing two volcanoes, in the foreground, with the discovered seamount in the background.

Credit: University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center.

Working aboard the R/V Kilo Moana, an oceanographic research ship owned by the U.S. Navy and operated by the University of Hawaii, Gardner and his team were using multibeam echosounder technology to create detailed images of the seafloor when, late at night, the seamount appeared “out of the blue.” The team was able to map the conical seamount in its entirety.

The yet-unnamed seamount, located about 300 kilometers southeast of the uninhabited Jarvis Island, lies in one of the least explored areas of the central Pacific Ocean. Because of that, Gardner was not particularly surprised by the discovery.

“These seamounts are very common, but we don’t know about them because most of the places that we go out and map have never been mapped before,” he says. Since only low-resolution satellite data exists for most of the Earth’s seafloor, many seamounts of this size are not resolved in the satellite data but advanced multibeam echosounder missions like this one can resolve them. “Satellites just can’t see these features and we can,” Gardner adds.

While the mapping mission was in support of the U.S. Extended Continental Shelf Task Force, a multi-agency project to delineate the outer limits of the U.S. continental shelf, the volcanic seamount lies within the U.S. exclusive economic zone. That means the U.S. has jurisdiction of the waters above it as well as the sediment and rocks of the seamount itself.

The seamount’s impact remains unknown – for now. It’s too deep (its summit lies nearly 4,000 meters beneath the surface of the ocean) to be a navigation hazard or to provide rich fisheries. “It’s probably 100 million years old,” Gardner says, “and it might have something in it we may be interested in 100 years from now.”

A world-renowned marine geologist, Gardner leads CCOM/JHC’s mapping efforts in support of U.S. claims to an extended continental shelf under the United Nations Law of the Sea Convention. He has participated in mapping cruises in the Atlantic, eastern and western Pacific, Gulf of Mexico, Gulf of Alaska and Beaufort Sea and published more than 200 scientific papers. Before joining UNH in 2003, he led the U.S. Geological Survey’s Pacific Mapping Group.

The UNH Center for Coastal and Ocean Mapping/Joint Hydrographic Center was founded in 1999 to develop tools to advance ocean mapping and hydrography and to train the next generation of hydrographers and ocean mappers. The JHC is a formal cooperative partnership between the University of New Hampshire and the National Oceanic and Atmospheric Administration (NOAA) whose aim is to create a national center for expertise in ocean mapping and hydrographic sciences.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,300 undergraduate and 2,200 graduate students.

Contact Information

Beth Potier
UNH Communications and Public Affairs
603-862-1566
beth.potier@unh.edu
@unhnews
@unhscience

Beth Potier | newswise

Further reports about: Coastal Gulf Hampshire Hydrographic Mapping Ocean Seamount UNH discovered limits means satellite seafloor seamounts

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>