Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNH Ocean Mappers Discover Seamount in Pacific Ocean

04.09.2014

University of New Hampshire scientists on a seafloor mapping mission have discovered a new seamount near the Johnson Atoll in the Pacific Ocean. The summit of the seamount rises 1,100 meters from the 5,100-meter-deep ocean floor.

The seamount was discovered in August when James Gardner, research professor in the UNH-NOAA Center for Coastal and Ocean Mapping/Joint Hydrographic Center, was leading a mapping mission aimed at helping delineate the outer limits of the U.S. continental shelf.


Three-dimensional view of the southwest side of the seamount with 23-degree slopes.

Credit: University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center.


Three-dimensional view of the seamount area (southeast point of view and 3.5x vertical exaggeration) showing two volcanoes, in the foreground, with the discovered seamount in the background.

Credit: University of New Hampshire Center for Coastal and Ocean Mapping/Joint Hydrographic Center.

Working aboard the R/V Kilo Moana, an oceanographic research ship owned by the U.S. Navy and operated by the University of Hawaii, Gardner and his team were using multibeam echosounder technology to create detailed images of the seafloor when, late at night, the seamount appeared “out of the blue.” The team was able to map the conical seamount in its entirety.

The yet-unnamed seamount, located about 300 kilometers southeast of the uninhabited Jarvis Island, lies in one of the least explored areas of the central Pacific Ocean. Because of that, Gardner was not particularly surprised by the discovery.

“These seamounts are very common, but we don’t know about them because most of the places that we go out and map have never been mapped before,” he says. Since only low-resolution satellite data exists for most of the Earth’s seafloor, many seamounts of this size are not resolved in the satellite data but advanced multibeam echosounder missions like this one can resolve them. “Satellites just can’t see these features and we can,” Gardner adds.

While the mapping mission was in support of the U.S. Extended Continental Shelf Task Force, a multi-agency project to delineate the outer limits of the U.S. continental shelf, the volcanic seamount lies within the U.S. exclusive economic zone. That means the U.S. has jurisdiction of the waters above it as well as the sediment and rocks of the seamount itself.

The seamount’s impact remains unknown – for now. It’s too deep (its summit lies nearly 4,000 meters beneath the surface of the ocean) to be a navigation hazard or to provide rich fisheries. “It’s probably 100 million years old,” Gardner says, “and it might have something in it we may be interested in 100 years from now.”

A world-renowned marine geologist, Gardner leads CCOM/JHC’s mapping efforts in support of U.S. claims to an extended continental shelf under the United Nations Law of the Sea Convention. He has participated in mapping cruises in the Atlantic, eastern and western Pacific, Gulf of Mexico, Gulf of Alaska and Beaufort Sea and published more than 200 scientific papers. Before joining UNH in 2003, he led the U.S. Geological Survey’s Pacific Mapping Group.

The UNH Center for Coastal and Ocean Mapping/Joint Hydrographic Center was founded in 1999 to develop tools to advance ocean mapping and hydrography and to train the next generation of hydrographers and ocean mappers. The JHC is a formal cooperative partnership between the University of New Hampshire and the National Oceanic and Atmospheric Administration (NOAA) whose aim is to create a national center for expertise in ocean mapping and hydrographic sciences.

The University of New Hampshire, founded in 1866, is a world-class public research university with the feel of a New England liberal arts college. A land, sea, and space-grant university, UNH is the state's flagship public institution, enrolling 12,300 undergraduate and 2,200 graduate students.

Contact Information

Beth Potier
UNH Communications and Public Affairs
603-862-1566
beth.potier@unh.edu
@unhnews
@unhscience

Beth Potier | newswise

Further reports about: Coastal Gulf Hampshire Hydrographic Mapping Ocean Seamount UNH discovered limits means satellite seafloor seamounts

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>