Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unexpected exoskeleton remnants found in Paleozoic fossils

Surprising new research shows that, contrary to conventional belief, remains of chitin-protein complex—structural materials containing protein and polysaccharide—are present in abundance in fossils of arthropods from the Paleozoic era.

Previously the oldest molecular signature of chitin-protein complex was discovered in 25 million year old Cenozoic fossils and remnants of structural protein have also been discovered in 80 million-year-old Mesozoic fossils.

Carnegie's George Cody and an international team of scientists discovered relicts of protein-chitin complex in fossils of arthropods from the Paleozoic era. Their findings, published online by Geology, could have major implications for our understanding of the organic fossil record.

Among other common features, arthropods have exoskeletons, or cuticles. The outer portions of these cuticles are made up of a composite of chitin fibers, which are embedded in a matrix of protein. It is well known that chitin and structural protein are easily degraded by microorganisms and it has long been believed that chitin and structural proteins would not be present in fossils of moderate age, let alone in fossils dating back to the early Paleozoic.

Cody and his team studied fossil remains of a 310-million-year-old scorpion cuticle from northern Illinois and a 417-million-year-old eurypterid—an extinct scorpion-like arthropod, possibly related to horseshoe crabs—from Ontario, Canada. Using sophisticated analytical instrument at the Advanced Light Source facility, the research team measured the absorption spectra of low-energy X-rays by carbon, nitrogen, and oxygen in the fossils. These measurements were taken at a resolution on the order of 25 nanometers. The researchers showed that the majority of carbon, nitrogen and oxygen found in these fossils from the Paleozoic era were derived from a protein-chitin complex. Not surprisingly, the protein-chitin material was somewhat degraded, either by chemical processes or partial bacterial degradation.

Cody speculates that the vestigial protein-chitin complex may play a critical role in organic fossil preservation by providing a substrate protected from total degradation by a coating waxy substances that protect the arthropods from desiccation.

This research was supported by funds from National Aeronautics and Space Administration Astrobiology Institute and Massachusetts Institute of Technology. Some of the researchers were supported by donations to the American Chemical Society Petroleum Research Fund. The analyses reported here were performed at the Advanced Light Source at Lawrence Berkeley Laboratory—a Department of Energy supported facility.

The Carnegie Institution for Science ( is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

George Cody | EurekAlert!
Further information:

More articles from Earth Sciences:

nachricht UCI and NASA document accelerated glacier melting in West Antarctica
26.10.2016 | University of California - Irvine

nachricht Ice shelf vibrations cause unusual waves in Antarctic atmosphere
25.10.2016 | American Geophysical Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>