Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Undo for Climate Change: Potential Pitfalls of Geoengineering

05.12.2013
Global warming alters the intensity of the water cycle, and the magnitude of these changes has now been explained by scientists of the Max-Planck-Institute for Biogeochemistry in Jena, Germany.

Using a simple physical approach, the study explains how the water cycle reacts to surface warming and that it responds differently to heating by sunlight or by a stronger atmospheric greenhouse effect. This has important consequences for potential interventions that aim to undo global warming by reflecting sunlight by geoengineering: While such interventions may cool down temperatures, simultaneous changes in the water cycle and the atmosphere cannot be compensated at the same time.


Water cycle
Annett Junginger; imaggeo.egu.eu

Precipitation should generally increase in a warmer world. When the surface warms due to a stronger atmospheric greenhouse effect, for instance due to more carbon dioxide in the atmosphere, the air near the surface is warmer and can hold more moisture. This should result in greater evaporation, greater rainfall, and thus a stronger cycling of water. With every degree of warming, air can hold about 7% more moisture. Climate model predictions generally show such an increase in rainfall with global warming, but they predict an increase of only about 2% per degree warming, which seems puzzling.

This puzzle has now been addressed in a study just published in the journal Earth System Dynamics of the European Geosciences Union, by scientists of the Max-Planck-Institute for Biogeochemistry in Jena, Germany. Dr. Axel Kleidon and his colleague Dr. Maik Renner looked at the processes that heat and cool the surface and how these change when the surface warms. Evaporation plays a key role here because it requires a lot of heat to evaporate water. Yet, the evaporated water from the surface also needs to be transported into the atmosphere. Kleidon and Renner applied a physical limit to this vertical transport and derived the same 2% increase in the water cycle predicted by climate models. They related this low increase, not to the general capacity of air to hold water vapor, but rather to the differential change in this capacity between the air near the surface and the air when it condenses in the atmosphere.

However, Kleidon and Renner also found that this 2% increase only applies to the case in which the surface warming was caused by a stronger atmospheric greenhouse effect. When the surface is heated more strongly by sunlight instead, they estimated that the water cycle would increase more strongly by about 3% per degree warming. This stronger increase is a consequence of the need to balance the greater energy input by sunlight with stronger cooling fluxes from the surface, which involves a stronger increase in evaporation.

“These different responses to surface heating are easy to explain”, says Kleidon, and uses a pot on the kitchen stove to illustrate. “The temperature in the pot is increased by putting on a lid, or by turning up the heat, but these two cases differ by how much energy flows through the pot”, he says. Similar effects take place when the surface warms: A stronger greenhouse effect puts on a thicker “lid” over the surface, whereas more heating by sunlight turns up the heat, enhancing the energy flow through the surface, and hence has a greater effect on the water cycle.

The consequences of these insights are profound. Studies of global warming generally lump sunlight and the atmospheric greenhouse effect into a single term, while Kleidon and Renner found that these two causes of surface heating have rather different impacts on the hydrologic cycle and on the vertical transport within the atmosphere. Their study provides important insights for understanding global climate change, specifically to the goals of geoengineering that attempts to compensate global warming by reducing the amount of sunlight reaching the surface by enhanced atmospheric reflection. When Kleidon and Renner applied their results to such a geoengineering scenario, they found that the compensation for a 2 degree warming weakens the water cycle by 2% and vertical transport by almost 8%. A similar response was also reported in a very recently published climate model intercomparison study on geoengineering. “It’s like putting a lid on the pot and turning down the heat at the same time”, explains Kleidon. “While in the kitchen you can reduce your energy bill by doing so, in the Earth system, this slows down the water cycle with wide-ranging potential consequences”, he concludes.

Weitere Informationen:
http://www.earth-syst-dynam.net/recent_papers.html
Publication
http://www.bgc-jena.mpg.de/index.php/BTM/Home
homepage A. Kleidon

Dr. Eberhard Fritz | Max-Planck-Institut
Further information:
http://www.earth-syst-dynam.net/recent_papers.html
http://www.bgc-jena.mpg.de/index.php/BTM/Home

More articles from Earth Sciences:

nachricht New plate adds plot twist to ancient tectonic tale
15.08.2017 | Rice University

nachricht Global warming will leave different fingerprints on global subtropical anticyclones
14.08.2017 | Institute of Atmospheric Physics, Chinese Academy of Sciences

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>