Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Undo for Climate Change: Potential Pitfalls of Geoengineering

05.12.2013
Global warming alters the intensity of the water cycle, and the magnitude of these changes has now been explained by scientists of the Max-Planck-Institute for Biogeochemistry in Jena, Germany.

Using a simple physical approach, the study explains how the water cycle reacts to surface warming and that it responds differently to heating by sunlight or by a stronger atmospheric greenhouse effect. This has important consequences for potential interventions that aim to undo global warming by reflecting sunlight by geoengineering: While such interventions may cool down temperatures, simultaneous changes in the water cycle and the atmosphere cannot be compensated at the same time.


Water cycle
Annett Junginger; imaggeo.egu.eu

Precipitation should generally increase in a warmer world. When the surface warms due to a stronger atmospheric greenhouse effect, for instance due to more carbon dioxide in the atmosphere, the air near the surface is warmer and can hold more moisture. This should result in greater evaporation, greater rainfall, and thus a stronger cycling of water. With every degree of warming, air can hold about 7% more moisture. Climate model predictions generally show such an increase in rainfall with global warming, but they predict an increase of only about 2% per degree warming, which seems puzzling.

This puzzle has now been addressed in a study just published in the journal Earth System Dynamics of the European Geosciences Union, by scientists of the Max-Planck-Institute for Biogeochemistry in Jena, Germany. Dr. Axel Kleidon and his colleague Dr. Maik Renner looked at the processes that heat and cool the surface and how these change when the surface warms. Evaporation plays a key role here because it requires a lot of heat to evaporate water. Yet, the evaporated water from the surface also needs to be transported into the atmosphere. Kleidon and Renner applied a physical limit to this vertical transport and derived the same 2% increase in the water cycle predicted by climate models. They related this low increase, not to the general capacity of air to hold water vapor, but rather to the differential change in this capacity between the air near the surface and the air when it condenses in the atmosphere.

However, Kleidon and Renner also found that this 2% increase only applies to the case in which the surface warming was caused by a stronger atmospheric greenhouse effect. When the surface is heated more strongly by sunlight instead, they estimated that the water cycle would increase more strongly by about 3% per degree warming. This stronger increase is a consequence of the need to balance the greater energy input by sunlight with stronger cooling fluxes from the surface, which involves a stronger increase in evaporation.

“These different responses to surface heating are easy to explain”, says Kleidon, and uses a pot on the kitchen stove to illustrate. “The temperature in the pot is increased by putting on a lid, or by turning up the heat, but these two cases differ by how much energy flows through the pot”, he says. Similar effects take place when the surface warms: A stronger greenhouse effect puts on a thicker “lid” over the surface, whereas more heating by sunlight turns up the heat, enhancing the energy flow through the surface, and hence has a greater effect on the water cycle.

The consequences of these insights are profound. Studies of global warming generally lump sunlight and the atmospheric greenhouse effect into a single term, while Kleidon and Renner found that these two causes of surface heating have rather different impacts on the hydrologic cycle and on the vertical transport within the atmosphere. Their study provides important insights for understanding global climate change, specifically to the goals of geoengineering that attempts to compensate global warming by reducing the amount of sunlight reaching the surface by enhanced atmospheric reflection. When Kleidon and Renner applied their results to such a geoengineering scenario, they found that the compensation for a 2 degree warming weakens the water cycle by 2% and vertical transport by almost 8%. A similar response was also reported in a very recently published climate model intercomparison study on geoengineering. “It’s like putting a lid on the pot and turning down the heat at the same time”, explains Kleidon. “While in the kitchen you can reduce your energy bill by doing so, in the Earth system, this slows down the water cycle with wide-ranging potential consequences”, he concludes.

Weitere Informationen:
http://www.earth-syst-dynam.net/recent_papers.html
Publication
http://www.bgc-jena.mpg.de/index.php/BTM/Home
homepage A. Kleidon

Dr. Eberhard Fritz | Max-Planck-Institut
Further information:
http://www.earth-syst-dynam.net/recent_papers.html
http://www.bgc-jena.mpg.de/index.php/BTM/Home

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>