Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

No Undo for Climate Change: Potential Pitfalls of Geoengineering

05.12.2013
Global warming alters the intensity of the water cycle, and the magnitude of these changes has now been explained by scientists of the Max-Planck-Institute for Biogeochemistry in Jena, Germany.

Using a simple physical approach, the study explains how the water cycle reacts to surface warming and that it responds differently to heating by sunlight or by a stronger atmospheric greenhouse effect. This has important consequences for potential interventions that aim to undo global warming by reflecting sunlight by geoengineering: While such interventions may cool down temperatures, simultaneous changes in the water cycle and the atmosphere cannot be compensated at the same time.


Water cycle
Annett Junginger; imaggeo.egu.eu

Precipitation should generally increase in a warmer world. When the surface warms due to a stronger atmospheric greenhouse effect, for instance due to more carbon dioxide in the atmosphere, the air near the surface is warmer and can hold more moisture. This should result in greater evaporation, greater rainfall, and thus a stronger cycling of water. With every degree of warming, air can hold about 7% more moisture. Climate model predictions generally show such an increase in rainfall with global warming, but they predict an increase of only about 2% per degree warming, which seems puzzling.

This puzzle has now been addressed in a study just published in the journal Earth System Dynamics of the European Geosciences Union, by scientists of the Max-Planck-Institute for Biogeochemistry in Jena, Germany. Dr. Axel Kleidon and his colleague Dr. Maik Renner looked at the processes that heat and cool the surface and how these change when the surface warms. Evaporation plays a key role here because it requires a lot of heat to evaporate water. Yet, the evaporated water from the surface also needs to be transported into the atmosphere. Kleidon and Renner applied a physical limit to this vertical transport and derived the same 2% increase in the water cycle predicted by climate models. They related this low increase, not to the general capacity of air to hold water vapor, but rather to the differential change in this capacity between the air near the surface and the air when it condenses in the atmosphere.

However, Kleidon and Renner also found that this 2% increase only applies to the case in which the surface warming was caused by a stronger atmospheric greenhouse effect. When the surface is heated more strongly by sunlight instead, they estimated that the water cycle would increase more strongly by about 3% per degree warming. This stronger increase is a consequence of the need to balance the greater energy input by sunlight with stronger cooling fluxes from the surface, which involves a stronger increase in evaporation.

“These different responses to surface heating are easy to explain”, says Kleidon, and uses a pot on the kitchen stove to illustrate. “The temperature in the pot is increased by putting on a lid, or by turning up the heat, but these two cases differ by how much energy flows through the pot”, he says. Similar effects take place when the surface warms: A stronger greenhouse effect puts on a thicker “lid” over the surface, whereas more heating by sunlight turns up the heat, enhancing the energy flow through the surface, and hence has a greater effect on the water cycle.

The consequences of these insights are profound. Studies of global warming generally lump sunlight and the atmospheric greenhouse effect into a single term, while Kleidon and Renner found that these two causes of surface heating have rather different impacts on the hydrologic cycle and on the vertical transport within the atmosphere. Their study provides important insights for understanding global climate change, specifically to the goals of geoengineering that attempts to compensate global warming by reducing the amount of sunlight reaching the surface by enhanced atmospheric reflection. When Kleidon and Renner applied their results to such a geoengineering scenario, they found that the compensation for a 2 degree warming weakens the water cycle by 2% and vertical transport by almost 8%. A similar response was also reported in a very recently published climate model intercomparison study on geoengineering. “It’s like putting a lid on the pot and turning down the heat at the same time”, explains Kleidon. “While in the kitchen you can reduce your energy bill by doing so, in the Earth system, this slows down the water cycle with wide-ranging potential consequences”, he concludes.

Weitere Informationen:
http://www.earth-syst-dynam.net/recent_papers.html
Publication
http://www.bgc-jena.mpg.de/index.php/BTM/Home
homepage A. Kleidon

Dr. Eberhard Fritz | Max-Planck-Institut
Further information:
http://www.earth-syst-dynam.net/recent_papers.html
http://www.bgc-jena.mpg.de/index.php/BTM/Home

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>