Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Underwater drones map ice algae in Antarctica


New robot technology leads Antarctic exploration into a new epoch. It is now possible to study the underside of sea ice across large distances and explore a world previously restricted to specially trained divers only.

Splash. A Weddell seal weighing almost 500 kg lands inside the tent and blocks the hole laboriously sawn out by researchers in the two-metre-thick ice to launch drones under the sea ice. The tent is lovely and warm. Small petroleum ovens provide heat to keep the hole free from ice. Outside the Antarctic sea ice stretches for miles around and the thermometer shows -15 degrees. The seal finally glides back into the water foraging for more fish and the researchers have access to the open water. The advanced technology drone is carefully lowered into the icy cold sea.

Ice algae have a fantastic ability to grow with very little light. Even under several meters of sea ice, mats of ice algae are formed.

Photo: Lars Chresten Lund Hansen

Working here (right next to the old hut used by polar explorer Robert Falcon Scott in the Antarctic winter) are researchers Lars Chresten Lund Hansen, Brian Sorrell and PhD student Bibi Ziersen, Aarhus University, along with their colleagues from Australia and New Zealand. They are developing and testing a new method to map the distribution of ice algae on the underside of the sea ice in Antarctica.

The tent covers a hole in the ice measuring 3m x 1m, and the researchers send their torpedo-shaped underwater drone down through the hole to map the underside of the sea ice. Making the hole takes most of a day and requires a major equipment package with an oil burner and steam drill.

"The drone was actually designed to study the sea bed and map factors such as sediment types, but our Australian colleagues modified the drone so that it now looks up towards the bottom of the sea ice and measures the light coming through the ice with a radiometer," says Associate Professor Lars Chresten Lund Hansen, Aarhus University.

Ice algae on the underside of the ice absorb light at certain wavelengths, and the radiometer measures how much or how little light is absorbed at these wavelengths. Based on the light measurements, the researchers can calculate the amount of algal biomass under the ice, and thereby get an idea of where the ice algae are located and how many there are. The drone follows a pre-programmed course and it maps the distribution of ice algae over very large areas where studies have not previously been possible.

An important part of the project is controlling the drone's measurements by conventional methods where ice cores are drilled out. The algae are scraped off the underside of the cores and a chlorophyll measurement reveals the number of algae. The chlorophyll figures are subsequently compared with the drone's radiometer measurements.

The aim of these investigations is to understand which factors regulate the distribution of the algae. There are some indications that the rough texture on the underside of the ice plays an important role in the algal colonisation of the sea ice. On the underside of some areas of the ice, there are thin plate-like ice crystals protruding 5 to 10 centimetres out of the bottom. The crystals are wedged between each other, forming a large surface that provides a good habitat for the diatoms that make up the bulk of the ice algae community.

Ice algae are the Antarctic's harbingers of spring

The Antarctic is completely white above the ice, but there is an abundance of colour below the ice. The small greenish-brown unicellular diatoms can grow into large colonies that form entire mats on the underside of the ice.

Ice algae are an important component of the Antarctic ecosystem. They begin to grow under the ice as soon as the Sun emerges in early spring, and survive on the small amount of sunshine that penetrates the compact layers of ice. They are also the year's first producers of food for krill and other zooplankton in the food chain. They get life going so to speak under the ice, where small creatures can frolic in the hanging garden and feast on the algae and bacteria associated with algal life.

"The ice algae account for 15-20% of the primary production in the Antarctic sea ice area. They're particularly important because they utilise the weak light in spring, when there are no other primary producers to provide food and energy for the rest of the food chain," explains Associate Professor Brian Sorrell, Aarhus University.

There are promising signs from the initial data provided by the underwater drone, and the plan is to extend the project to Arctic locations in the coming field season - either at Station North in Greenland or north of Svalbard on the research vessel R/V Lance.


Lars Chresten Lund Hansen and his colleagues used a GoPro camera to record the launching of the underwater drone and the seal's visit. See the video on Youtube:

Lars Chresten Lund Hansen | EurekAlert!
Further information:

Further reports about: Aarhus Antarctica crystals drone primary sea ice underwater underwater drone wavelengths

More articles from Earth Sciences:

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

nachricht UM researchers study vast carbon residue of ocean life
19.10.2016 | University of Miami Rosenstiel School of Marine & Atmospheric Science

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>