Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea volcano gave off signals before eruption in 2011

11.06.2012
A team of scientists that last year created waves by correctly forecasting the 2011 eruption of Axial Seamount years in advance now says that the undersea volcano located some 250 miles off the Oregon coast gave off clear signals hours before its impending eruption.

The researchers' documentation of inflation of the undersea volcano from gradual magma intrusion over a period of years led to the long-term eruption forecast. But new analyses using data from underwater hydrophones also show an abrupt spike in seismic energy about 2.6 hours before the eruption started, which the scientists say could lead to short-term forecasting of undersea volcanoes in the future.

They also say that Axial could erupt again – as soon as 2018 – based on the cyclic pattern of ground deformation measurements from bottom pressure recorders.

Results of the research, which was funded by the National Science Foundation, the National Oceanic and Atmospheric Administration, and the Monterey Bay Aquarium Research Institute (MBARI), are being published this week in three separate articles in the journal Nature Geoscience.

Bill Chadwick, an Oregon State University geologist and lead author on one of the papers, said the link between seismicity, seafloor deformation and the intrusion of magma has never been demonstrated at a submarine volcano, and the multiple methods of observation provide fascinating new insights.

"Axial Seamount is unique in that it is one of the few places in the world where a long-term monitoring record exists at an undersea volcano – and we can now make sense of its patterns," said Chadwick, who works out of Oregon State's Hatfield Marine Science Center in Newport, Ore. "We've been studying the site for years and the uplift of the seafloor has been gradual and steady beginning in about 2000, two years after it last erupted.

"But the rate of inflation from magma went from gradual to rapid about 4-5 months before the eruption," added Chadwick. "It expanded at roughly triple the rate, giving a clue that the next eruption was coming."

Bob Dziak, an Oregon State University marine geologist, had previously deployed hydrophones on Axial that monitor sound waves for seismic activity. During a four-year period prior to the 2011 eruption, there was a gradual buildup in the number of small earthquakes (roughly magnitude 2.0), but little increase in the overall "seismic energy" resulting from those earthquakes.

That began to change a few hours before the April 6, 2011, eruption, said Dziak, who also is lead author on one of the Nature Geoscience articles.

"The hydrophones picked up the signal of literally thousands of small earthquakes within a few minutes, which we traced to magma rising from within the volcano and breaking through the crust," Dziak said. "As the magma ascends, it forces its way through cracks and creates a burst of earthquake activity that intensifies as it gets closer to the surface.

"Using seismic analysis, we were able to clearly see how the magma ascends within the volcano about two hours before the eruption," Dziak said. "Whether the seismic energy signal preceding the eruption is unique to Axial or may be replicated at other volcanoes isn't yet clear – but it gives scientists an excellent base from which to begin."

The researchers also used a one-of-a-kind robotic submersible to bounce sound waves off the seafloor from an altitude of 50 meters, mapping the topography of Axial Seamount both before and after the 2011 eruption at a one-meter horizontal resolution. These before-and-after surveys allowed geologists to clearly distinguish the 2011 lava flows from the many previous flows in the area.

MBARI researchers used three kinds of sonar to map the seafloor around Axial, and the detailed images show lava flows as thin as eight inches, and as thick as 450 feet.

"These autonomous underwater vehicle-generated maps allowed us, for the first time, to comprehensively map the thickness and extent of lava flows from a deep-ocean submarine in high resolution," said David Caress, an MBARI engineer and lead author on one of the Nature Geoscience articles. "These new observations allow us to unambiguously differentiate between old and new lava flows, locate fissures from which these flows emerged, and identify fine-scale features formed as the lava flowed and cooled."

The researchers also used shipboard sonar data to map a second, thicker lava flow about 30 kilometers south of the main flow – also a likely result of the 2011 eruption.

Knowing the events leading up to the eruption – and the extent of the lava flows – is important because over the next few years researchers will be installing many new instruments and underwater cables around Axial Seamount as part of the Ocean Observatories Initiative. These new instruments will greatly increase scientists' ability to monitor the ocean and seafloor off of the Pacific Northwest.

"Now that we know some of the long-term and short-term signals that precede eruptions at Axial, we can monitor the seamount for accelerated seismicity and inflation," said OSU's Dziak. "The entire suite of instruments will be deployed as part of the Ocean Observatories Initiative in the next few years – including new sensors, samplers and cameras – and next time they will be able to catch the volcano in the act."

The scientists also observed and documented newly formed hydrothermal vents with associated biological activity, Chadwick said.

"We saw snowblower vents that were spewing out nutrients so fast that the microbes were going crazy," he pointed out. "Combining these biological observations with our knowledge of the ground deformation, seismicity and lava distribution from the 2011 eruption will further help us connect underwater volcanic activity with the life it supports."

Scientists from Columbia University, the University of Washington, North Carolina State University, and the University of California at Santa Cruz also participated in the project and were co-authors on the Nature Geoscience articles.

Note to Journalists: This story can be complemented with several images, video clips and sound bites from the eruption and its aftermath. Details, including caption and credit information, are available at these links:

For low- and high-resolution video, and audio of the eruption, go to: http://www.oregonwin.org/2011-08-09_ocean/
New lava: http://www.flickr.com/photos/oregonstateuniversity/7348774068/in/photostream
Ocean hydrophone: http://www.flickr.com/photos/oregonstateuniversity/7348764634/in/photostream
Hydrophone buried by lava: http://www.flickr.com/photos/oregonstateuniversity/7163533349/in/photostream
Snowblower vent: http://www.flickr.com/photos/oregonstateuniversity/7163557875/in/photostream

Map created by MBARI of lava flows: http://www.flickr.com/photos/oregonstateuniversity/7348734544/in/photostream

Bill Chadwick | EurekAlert!
Further information:
http://oregonstate.edu/

More articles from Earth Sciences:

nachricht Stagnation in the South Pacific Explains Natural CO2 Fluctuations
23.02.2018 | Carl von Ossietzky-Universität Oldenburg

nachricht First evidence of surprising ocean warming around Galápagos corals
22.02.2018 | University of Arizona

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>