Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea gas leaks off Israel’s coast are discovered by University of Haifa researchers

08.11.2012
A geophysics team from the Leon H. Charney School of Marine Sciences at the University of Haifa has identified a series of active gas springs on the Haifa Bay sea floor. “Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters,” said Dr. Uri Schattner, head of the Department of Marine Geosciences

The terms “gas” and “sea” for many will invoke associations of reserves, business, and a lot of money. Whatever the association, most of the efforts in Israel’s energy field are being directed at gas buried deep under the Mediterranean seabed. Now a new geophysical study, the first of its kind in Israel, has uncovered a system of active gas springs in the Haifa Bay seabed, at relatively shallow depths, only a few dozen meters below the surface.

The study, published in the journal Continental Shelf Research, describes the entire system, from its sources under the sea floor through the natural springs emerging from the seabed.

“This is a natural laboratory for researching gas emissions from the sea floor – natural springs and less natural ones. We are only beginning to understand their contribution to climate and ecological change,” said Dr. Uri Schattner of the Leon H. Charney School of Marine Sciences at the University of Haifa, who led the research.

The first evidence of gas springs emerged from examining a map of the sea floor off Israel’s northern coast. A joint effort between the University of Haifa and the Israel Oceanographic and Limnological Research Institute revealed no less than 700 spots in the seabed that looked like possible gas springs. The researchers’ suspicions intensified when seismic data identified pockets of gas beneath the seabed.

Based on this evidence, researchers went out to sea four times to collect more data from the seabed and from under the sea floor. “Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters,” said Dr. Schattner.

However, what they found exceeded all expectations. A gas deposit of 72 square kilometers was found on the continental shelf, at depths of between 37 meters to 112 meters. While many of the gases remain in the reserve, some still manage to escape into the sea.

“We don’t know yet what kind of gas we’re talking about, but its role in undermining the stability of the seabed is clear,” said Dr. Michael Lazar, a member of the research team. “This means that any discussion of marine infrastructure development must seriously relate to this shallow gas stratum.”

Israel’s Energy and Water Ministry is expending a great deal of effort on formulating National Master Plan 37H, which, among other things, deals with the transportation of gas produced from deep-sea drilling to pressure-reducing facilities. These will be located on the continental shelf, in the sea, from where the gas will be transported to the coast.

“Now we are beginning to understand that there is no substitute for thoroughly researching the stability of the sea floor to prevent an infrastructure failure, since any leak could cause an ecological disaster,” said Dr. Schattner.

During the coming months, the researchers will be making another expedition to the springs, this time with a team of biologists and geologists. This unique combination of experts from the Leon H. Charney School of Marine Sciences will be able to provide a better understanding of the type of gas involved and its influence on marine life near the sea floor.

“Every research trip challenges and fascinates us anew,” said Dr. Schattner. “This time we’ll be going out with a few vessels, each of which is dedicated to different types of surveying and sampling.”

For more details contact Rachel Feldman
rfeldman@univ.haifa.ac.il
+972-54-3933092
Communications and Media
University of Haifa

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Earth Sciences:

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

nachricht NASA spies Tropical Cyclone 08P's formation
23.02.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>