Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Undersea gas leaks off Israel’s coast are discovered by University of Haifa researchers

08.11.2012
A geophysics team from the Leon H. Charney School of Marine Sciences at the University of Haifa has identified a series of active gas springs on the Haifa Bay sea floor. “Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters,” said Dr. Uri Schattner, head of the Department of Marine Geosciences

The terms “gas” and “sea” for many will invoke associations of reserves, business, and a lot of money. Whatever the association, most of the efforts in Israel’s energy field are being directed at gas buried deep under the Mediterranean seabed. Now a new geophysical study, the first of its kind in Israel, has uncovered a system of active gas springs in the Haifa Bay seabed, at relatively shallow depths, only a few dozen meters below the surface.

The study, published in the journal Continental Shelf Research, describes the entire system, from its sources under the sea floor through the natural springs emerging from the seabed.

“This is a natural laboratory for researching gas emissions from the sea floor – natural springs and less natural ones. We are only beginning to understand their contribution to climate and ecological change,” said Dr. Uri Schattner of the Leon H. Charney School of Marine Sciences at the University of Haifa, who led the research.

The first evidence of gas springs emerged from examining a map of the sea floor off Israel’s northern coast. A joint effort between the University of Haifa and the Israel Oceanographic and Limnological Research Institute revealed no less than 700 spots in the seabed that looked like possible gas springs. The researchers’ suspicions intensified when seismic data identified pockets of gas beneath the seabed.

Based on this evidence, researchers went out to sea four times to collect more data from the seabed and from under the sea floor. “Geophysical information enables us to research beneath the sea floor and map out the entire system, from the gas sources to their penetration of the sea waters,” said Dr. Schattner.

However, what they found exceeded all expectations. A gas deposit of 72 square kilometers was found on the continental shelf, at depths of between 37 meters to 112 meters. While many of the gases remain in the reserve, some still manage to escape into the sea.

“We don’t know yet what kind of gas we’re talking about, but its role in undermining the stability of the seabed is clear,” said Dr. Michael Lazar, a member of the research team. “This means that any discussion of marine infrastructure development must seriously relate to this shallow gas stratum.”

Israel’s Energy and Water Ministry is expending a great deal of effort on formulating National Master Plan 37H, which, among other things, deals with the transportation of gas produced from deep-sea drilling to pressure-reducing facilities. These will be located on the continental shelf, in the sea, from where the gas will be transported to the coast.

“Now we are beginning to understand that there is no substitute for thoroughly researching the stability of the sea floor to prevent an infrastructure failure, since any leak could cause an ecological disaster,” said Dr. Schattner.

During the coming months, the researchers will be making another expedition to the springs, this time with a team of biologists and geologists. This unique combination of experts from the Leon H. Charney School of Marine Sciences will be able to provide a better understanding of the type of gas involved and its influence on marine life near the sea floor.

“Every research trip challenges and fascinates us anew,” said Dr. Schattner. “This time we’ll be going out with a few vessels, each of which is dedicated to different types of surveying and sampling.”

For more details contact Rachel Feldman
rfeldman@univ.haifa.ac.il
+972-54-3933092
Communications and Media
University of Haifa

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Earth Sciences:

nachricht Geophysicists and atmospheric scientists partner to track typhoons' seismic footprints
16.02.2018 | Princeton University

nachricht NASA finds strongest storms in weakening Tropical Cyclone Sanba
15.02.2018 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>