Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the secret world of the Plastisphere

26.02.2014
Scientists are revealing how microbes living on floating pieces of plastic marine debris affect the ocean ecosystem, and the potential harm they pose to invertebrates, humans and other animals. New research being presented here today delves deeper into the largely unexplored world of the “Plastisphere” – an ecological community of microbial organisms living on ocean plastic that was first discovered last year.

When scientists initially studied the Plastisphere, they found that at least 1,000 different types of microbes thrive on these tiny plastic islands, and that they might pose a risk to larger animals, including invertebrates and humans. The original studies also showed that the Plastisphere’s inhabitants included bacteria known to cause diseases in animals and humans.

Since then, researchers have been trying to figure out why these potentially dangerous bacteria live on the Plastisphere, how they got there and how they are affecting the surrounding ocean.

New evidence suggests that “super-colonizers” form detectable clusters on the plastic in minutes. Other findings indicate that some types of harmful bacteria favor plastics more than others. And, scientists are exploring if fish or other ocean animals may be helping these pathogens thrive by ingesting the plastic. That could allow bacteria to acquire additional nutrients as they pass through the guts of the fish, said Tracy Mincer, an associate scientist at Woods Hole Oceanographic Institution in Woods Hole, Mass.

Revealing this information could help scientists better understand how much of a potential threat these harmful bacteria pose and the role the Plastisphere plays in the larger ocean ecosystem, including its potential to alter nutrients in the water. That information could also help reduce the impact of plastic pollution in the ocean – for instance, if plastics manufacturers learned how to make their products so they degrade at an optimal rate, Mincer said.

“One of the benefits of understanding the Plastisphere right now and how it interacts with biota in general, is that we are better able to inform materials scientists on how to make better materials and, if they do get out to sea, have the lowest impact possible,” said Mincer, who discovered the Plastisphere last year along with Linda Amaral-Zettler at the Marine Biological Laboratory (MBL) and Erik Zettler at the SEA Education Association, both also in Woods Hole.

The Plastisphere team is presenting their latest research on these communities today at the 2014 Ocean Sciences Meeting, which is co-sponsored by the Association for the Sciences of Limnology and Oceanography, The Oceanography Society and the American Geophysical Union.

Other new results include discoveries about how the plastic is colonized and how it interacts with other marine organisms. Yet additional findings shed light on the similarities and differences between Plastisphere communities in different locations and on different types of plastic. This research could help scientists determine the age of plastic floating in the ocean, which could help them figure out how it breaks down in the water. It could also potentially aid in determining where the plastic debris came from, and how the plastic and the microbes that live on board could impact organisms that come into contact with them, the scientists said.

“It is clear,” said Amaral-Zettler, “that the Plastisphere definitely has a function out there in the ocean” and these experiments seek to quantify what it is.

Notes for Journalists:

The researchers on these studies will present oral presentations about their work on Monday 24 February 2014 at the Ocean Sciences Meeting. The meeting is taking place from 23 – 28 February at the Hawaii Convention Center in Honolulu. For more information for members of the news media, please go to http://www.sgmeet.com/osm2014/media.asp.

Below are abstracts of the presentations. The presentations are part of Session 140: The Science of Plastic Marine Debris and other Anthropogenic Influences being held Monday 24 February from 8 a.m. to 12:30 p.m. local Hawaii time in room 316 B.

Title:

Comparative Microbial Community Structure and Biogeography of Atlantic and Pacific “Plastisphere” Communities

Authors:

Amaral-Zettler, L. A., Marine Biological Laboratory, Woods Hole, MA, USA;

Boyd, G., Sea Education Association, Woods Hole, MA, USA;

Slikas, B., Marine Biological Laboratory, Woods Hole, MA, USA; 

Zettler, E. R., Sea Education Association, Woods Hole, MA, USA; 

Mincer, T. J., Woods Hole Oceanographic Institution, Woods Hole, MA, USA.

Abstract:

Plastic Marine Debris (PMD) is the most abundant form of marine debris found in all of the ocean’s gyres. The Plastisphere is defined as the thin layer of life found on the outer surface of PMD. Plastisphere microbial communities on microplastics (<5 mm) collected from open ocean surface waters are distinct from the surrounding seawater and harbor a diversity of microbial species including potential pathogens. However, the variability of the Plastisphere over space and time remains underexplored. We completed collection and next-generation amplicon sequencing of 16S rRNA gene V6 hypervariable regions on samples from two open-ocean transects in the North Atlantic Subtropical Gyre and the North Pacific Subtropical Gyre, giving us good data sets for comparing regional differences within and between oceans. Our data reveal that many of the same bacterial Operational Taxonomic Units (OTUs) inhabit the Plastisphere of Atlantic and Pacific gyres, but dominant OTUs are often distinct on different pieces of plastic regardless of ocean basin. Our sampling strategy allows us to compare and contrast Plastisphere biogeography along marine longitudinal and latitudinal gradients.

 Title:

Microbial Succession on Plastic Marine Debris: Development of the “Plastisphere” Community

Authors:

Zettler, E. R., Sea Education Association, Woods Hole, MA, USA; 

Morrall, C., St. George's University, Grenada, West Indies; 

Proskurowski, G., University of Washington, Seattle, WA, USA; 

Mincer, T. J., Woods Hole Oceanographic Institution, Woods Hole, MA, USA; 

Amaral-Zettler, L. A., Marine Biological Laboratory, Woods Hole, MA, USA.

Abstract:

Recent studies have revealed a diverse microbial community on plastic marine debris in the Atlantic and Pacific oceans, the so-called “Plastisphere”. How this community develops over time on different types of plastic and in different geographic areas of the world ocean is unknown. We immersed sterile polyethylene, polypropylene, polystyrene, and glass samples in temperate (Woods Hole, MA, USA) and tropical (St. Georges, Grenada) coastal surface waters, and then monitored the development of microbial communities on these substrates using quantitative counts of scanning electron micrographs and next-generation amplicon sequencing. A variety of pennate diatoms colonized plastic marine debris within the first week and diatoms dominated the early communities in both locations, followed by bacteria. Over time the community changed and other groups such as sessile ciliates colonized the plastic. Communities on expanded polystyrene developed more slowly than on the other substrates, and total coverage increased more quickly in temperate waters than tropical waters. Changes in the diversity and composition of communities over time may provide clues to the age of plastic marine debris, which is currently difficult to determine. 

Title:

Investigation of Microbial Adherence and Virulence Factors Associated with Open-Ocean Derived Plastic Marine Debris: Vibrio Bacteria as a Model System

Authors:

Mincer, T. J., Woods Hole Oceanographic Institution, Woods Hole, MA, USA; 

Guzzetta, V. S., DePauw University, Greencastle, IN, USA;  

Slikas, B., Marine Biological Laboratory, Woods Hole, MA, USA; 

Zettler, E. R., Sea Education Association, Woods Hole, MA, USA; 

Amaral-Zettler, L. A., Marine Biological Laboratory, Woods Hole, MA, USA.

Abstract:

Plastic Marine Debris (PMD) persists much longer than any natural floating substrate and provides an attachment surface for thin layers of life (termed the Plastisphere). Our previous amplicon sequencing surveys of 16S rRNA genes have shown that Bacteria of the genus Vibrio can comprise a major portion of the Plastisphere – at times nearly 25% of the bacterial community. We adapted a 96-well plate format biofilm quantification assay to survey over 50 Vibrio spp. cultivars for attachment ability to various plastic resins. Some vibrios demonstrated cell density-dependent attachment and/or a preference for plastic resin type. Strikingly, ‘super-colonizer’ vibrios were discovered to form measureable biofilms on plastic in a matter of minutes. In general, biofilm formation phenotypes clustered within Heat Shock Protein 60 (HSP 60) gene phylogenies. We generated a metagenomic dataset of a Vibrio-dominated PMD sample and analyzed it for key adherence and virulence genes. Characterizing Vibrio attachment to plastic will provide a model for PMD colonization and clues to the ecological function of this prevalent group of Plastisphere inhabitants.

Contact information for the researchers:

Erik Zettler, +1 (508) 360-8384, ezettler@sea.edu 

Linda Amaral-Zettler, +1 (508) 292-5990, amaral@mbl.edu 

Tracy Mincer, +1 (619) 507-8129, tmincer@whoi.edu

Mary Catherine Adams | American Geophysical Union
Further information:
http://www.agu.org

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>