Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncorking East Antarctica yields unstoppable sea-level rise

05.05.2014

The melting of a rather small ice volume on East Antarctica’s shore could trigger a persistent ice discharge into the ocean, resulting in unstoppable sea-level rise for thousands of years to come. This is shown in a study now published in Nature Climate Change by scientists from the Potsdam Institute for Climate Impact Research (PIK). The findings are based on computer simulations of the Antarctic ice flow using improved data of the ground profile underneath the ice sheet.

“East Antarctica’s Wilkes Basin is like a bottle on a slant,” says lead-author Matthias Mengel, “once uncorked, it empties out.” The basin is the largest region of marine ice on rocky ground in East Antarctica. Currently a rim of ice at the coast holds the ice behind in place: like a cork holding back the content of a bottle.

While the air over Antarctica remains cold, warming oceans can cause ice loss on the coast. Ice melting could make this relatively small cork disappear – once lost, this would trigger a long term sea-level rise of 300-400 centimeters. “The full sea-level rise would ultimately be up to 80 times bigger than the initial melting of the ice cork,” says co-author Anders Levermann.

“Until recently, only West Antarctica was considered unstable, but now we know that its ten times bigger counterpart in the East might also be at risk,” says Levermann, who is head of PIK’s research area Global Adaptation Strategies and a lead-author of the sea-level change chapter of the most recent scientific assessment report by the Intergovernmental Panel on Climate Change, IPCC.

This report, published in late September, projects Antarctica’s total sea level contribution to be up to 16 centimeters within this century. “If half of that ice loss occurred in the ice-cork region, then the discharge would begin. We have probably overestimated the stability of East Antarctica so far,” says Levermann.

***Emitting greenhouse-gases could start uncontrollable ice-melt***

Melting would make the grounding line retreat – this is where the ice on the continent meets the sea and starts to float. The rocky ground beneath the ice forms a huge inland sloping valley below sea-level. When the grounding line retreats from its current position on a ridge into the valley, the rim of the ice facing the ocean becomes higher than before. More ice is then pushed into the sea, eventually breaking off and melting. And the warmer it gets, the faster this happens.

Complete ice discharge from the affected region in East Antarctica takes five thousand to ten thousand years in the simulations. However, once started, the discharge would slowly but relentlessly continue until the whole basin is empty, even if climate warming stopped. “This is the underlying issue here”, says Matthias Mengel. “By emitting more and more greenhouse gases we might trigger responses now that we may not be able to stop in the future.” Such extensive sea level rise would change the face of planet Earth – coastal cities such as Mumbai, Tokyo or New York are likely to be at risk.

Article: Mengel, M., Levermann, A. (2014): Ice plug prevents irreversible discharge from East Antarctica. Nature Climate Change (online) [DOI: 10.1038/NCLIMATE2226]

Weblink to the article: www.nature.com/nclimate/journal/vaop/ncurrent/full/nclimate2226.html

Related article: Levermann, A., Bamber, J., Drijfhout, S., Ganopolski, A., Haeberli, W., Harris, N.R.P., Huss, M., Krüger, K., Lenton, T., Lindsay, R.W., Notz, D., Wadhams, P., Weber, S. (2012): Potential climatic transitions with profound impact on Europe - Review of the current state of six 'tipping elements of the climate system'.
Climatic Change 110 (2012), 845-878, [DOI 10.1007/s10584-011-0126-5]

Weblink to related article: http://link.springer.com/article/10.1007%2Fs10584-011-0126-5

For further information please contact:
PIK press office
Phone: +49 331 288 25 07
E-Mail: press@pik-potsdam.de
Twitter: @PIK_Climate

Jonas Viering | PIK Potsdam

Further reports about: Antarctica Change Climate Climatic Earth IPCC greenhouse-gases

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>