Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unaccounted feedbacks from climate-induced ecosystem changes may increase future climate warming

26.07.2010
The terrestrial biosphere regulates atmospheric composition, and hence climate. Projections of future climate changes already account for "carbon-climate feedbacks", which means that more CO2 is released from soils in a warming climate than is taken up by plants due to photosynthesis.

Climate changes will also lead to increases in the emission of CO2 and methane from wetlands, nitrous oxides from soils, volatile organic compounds from forests, and trace gases and soot from fires. All these emissions affect atmospheric chemistry, including the amount of ozone in the lower atmosphere, where it acts as a powerful greenhouse gas as well as a pollutant toxic to people and plants.

Although our understanding of other feedbacks associated with climate-induced ecosystem changes is improving, the impact of these changes is not yet accounted for in climate-change modelling. An international consortium of scientists, led by Almut Arneth from Lund University, has estimated the importance of these unaccounted "biogeochemical feedbacks" in an article that appears as Advance Online Publication on Nature Geoscience's website on 25 July at 1800 London time. They estimate a total additional radiative forcing by the end of the 21st century that is large enough to offset a significant proportion of the cooling due to carbon uptake by the biosphere as a result of fertilization of plant growth.

There are large uncertainties associated in these feedbacks, especially in how changes in one biogeochemical cycle will affect the other cycles, for example how changes in nitrogen cycling will affect carbon uptake. Nevertheless, as the authors point out, palaeo-environmental records show that ecosystems and trace gas emissions have responded to past climate change within decades. Contemporary observations also show that ecosystem processes respond rapidly to changes in climate and the atmospheric environment.

Thus, in addition to the carbon cycle-climate interactions that have been a major focus of modelling work in recent years, other biogeochemistry feedbacks could be at least equally important for future climate change. The authors of the Nature Geoscience article argue that it is important to include these feedbacks in the next generation of Earth system models.

This work was promoted by iLEAPS (Integrated Land Ecosystem and Atmospheric Processes), a core project of the International Geosphere-Biosphere Programme, and developed through workshops supported by the Finnish Cultural Programme.

Professor Timo Vesala | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>