Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unaccounted feedbacks from climate-induced ecosystem changes may increase future climate warming

26.07.2010
The terrestrial biosphere regulates atmospheric composition, and hence climate. Projections of future climate changes already account for "carbon-climate feedbacks", which means that more CO2 is released from soils in a warming climate than is taken up by plants due to photosynthesis.

Climate changes will also lead to increases in the emission of CO2 and methane from wetlands, nitrous oxides from soils, volatile organic compounds from forests, and trace gases and soot from fires. All these emissions affect atmospheric chemistry, including the amount of ozone in the lower atmosphere, where it acts as a powerful greenhouse gas as well as a pollutant toxic to people and plants.

Although our understanding of other feedbacks associated with climate-induced ecosystem changes is improving, the impact of these changes is not yet accounted for in climate-change modelling. An international consortium of scientists, led by Almut Arneth from Lund University, has estimated the importance of these unaccounted "biogeochemical feedbacks" in an article that appears as Advance Online Publication on Nature Geoscience's website on 25 July at 1800 London time. They estimate a total additional radiative forcing by the end of the 21st century that is large enough to offset a significant proportion of the cooling due to carbon uptake by the biosphere as a result of fertilization of plant growth.

There are large uncertainties associated in these feedbacks, especially in how changes in one biogeochemical cycle will affect the other cycles, for example how changes in nitrogen cycling will affect carbon uptake. Nevertheless, as the authors point out, palaeo-environmental records show that ecosystems and trace gas emissions have responded to past climate change within decades. Contemporary observations also show that ecosystem processes respond rapidly to changes in climate and the atmospheric environment.

Thus, in addition to the carbon cycle-climate interactions that have been a major focus of modelling work in recent years, other biogeochemistry feedbacks could be at least equally important for future climate change. The authors of the Nature Geoscience article argue that it is important to include these feedbacks in the next generation of Earth system models.

This work was promoted by iLEAPS (Integrated Land Ecosystem and Atmospheric Processes), a core project of the International Geosphere-Biosphere Programme, and developed through workshops supported by the Finnish Cultural Programme.

Professor Timo Vesala | EurekAlert!
Further information:
http://www.helsinki.fi

More articles from Earth Sciences:

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>