Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMD Finding May Hold Key to Gaia Theory of Earth as Living Organism

16.05.2012
Discovery ultimately could lead to better climate understanding and prediction

Is Earth really a sort of giant living organism as the Gaia hypothesis predicts?


Credit: NOAA

A new discovery made at the University of Maryland may provide a key to answering this question. This key of sulfur could allow scientists to unlock heretofore hidden interactions between ocean organisms, atmosphere, and land -- interactions that might provide evidence supporting this famous theory.

The Gaia hypothesis -- first articulated by James Lovelock and Lynn Margulis in the 1970s -- holds that Earth's physical and biological processes are inextricably connected to form a self-regulating, essentially sentient, system.

One of the early predictions of this hypothesis was that there should be a sulfur compound made by organisms in the oceans that was stable enough against oxidation in water to allow its transfer to the air. Either the sulfur compound itself, or its atmospheric oxidation product, would have to return sulfur from the sea to the land surfaces. The most likely candidate for this role was deemed to be dimethylsulfide.

Newly published work done at the University of Maryland by first author Harry Oduro, together with UMD geochemist James Farquhar and marine biologist Kathryn Van Alstyne of Western Washington University, provides a tool for tracing and measuring the movement of sulfur through ocean organisms, the atmosphere and the land in ways that may help prove or disprove the controversial Gaia theory. Their study appears in this week's Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

According to Oduro and his colleagues, this work presents the first direct measurements of the isotopic composition of dimethylsulfide and of its precursor dimethylsulfoniopropionate. These measurements reveal differences in the isotope ratios of these two sulfur compounds that are produced by macroalga and phytoplankton. These measurements (1) are linked to the compounds' metabolism by these ocean organisms and (2) carry implications for tracking dimethylsulfide emissions from the ocean to the atmosphere.

Sulfur, the tenth most abundant element in the universe, is part of many inorganic and organic compounds. Sulfur cycles sulfur through the land, atmosphere and living things and plays critical roles in both climate and in the health of organisms and ecosystems.

"Dimethylsulfide emissions play a role in climate regulation through transformation to aerosols that are thought to influence the earth's radiation balance," says Oduro, who conducted the research while completing a Ph.D. in geology & earth system sciences at Maryland and now is a postdoctoral fellow at the Massachusetts Institute of Technology. "We show that differences in isotopic composition of dimethylsulfide may vary in ways that will help us to refine estimates of its emission into the atmosphere and of its cycling in the oceans."

As with many other chemical elements, sulfur consists of different isotopes. All isotopes of an element are characterized by having the same number of electrons and protons but different numbers of neutrons. Therefore, isotopes of an element are characterized by identical chemical properties, but different mass and nuclear properties. As a result, it can be possible for scientists to use unique combinations of an element's radioactive isotopes as isotopic signatures through which compounds with that element can be traced.

"What Harry did in this research was to devise a way to isolate and measure the sulfur isotopic composition of these two sulfur compounds," says Farquhar, a professor in the University of Maryland's department of geology. "This was a very difficult measurement to do right, and his measurements revealed an unexpected variability in an isotopic signal that appears to be related to the way the sulfur is metabolized.

"Harry's work establishes that we should expect to see variability in the sulfur isotope signatures of these compounds in the oceans under different environmental conditions and for different organisms. I think this will ultimately be very important for using isotopes to trace the cycling of these compounds in the surface oceans as well as the flux of dimethylsulfide to the atmosphere. The ability to do this could help us answer important climate questions, and ultimately better predict climate changes. And it may even help us to better trace connections between dimethylsulfide emissions and sulfate aerosols, ultimately testing a coupling in the Gaia hypothesis," Farquhar says.

Media Contacts:
James Farquhar
Professor
Department of Geology
University of Maryland
(301) 405-5043
jfarquha@essic.umd.edu
Harry Oduro
Postdoctoral Fellow
MIT
(617)-324-3946
Hoduro@mit.edu

Lee Tune | EurekAlert!
Further information:
http://www.umd.edu

More articles from Earth Sciences:

nachricht Predicting unpredictability: Information theory offers new way to read ice cores
07.12.2016 | Santa Fe Institute

nachricht Sea ice hit record lows in November
07.12.2016 | University of Colorado at Boulder

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>