Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UMD Finding May Hold Key to Gaia Theory of Earth as Living Organism

16.05.2012
Discovery ultimately could lead to better climate understanding and prediction

Is Earth really a sort of giant living organism as the Gaia hypothesis predicts?


Credit: NOAA

A new discovery made at the University of Maryland may provide a key to answering this question. This key of sulfur could allow scientists to unlock heretofore hidden interactions between ocean organisms, atmosphere, and land -- interactions that might provide evidence supporting this famous theory.

The Gaia hypothesis -- first articulated by James Lovelock and Lynn Margulis in the 1970s -- holds that Earth's physical and biological processes are inextricably connected to form a self-regulating, essentially sentient, system.

One of the early predictions of this hypothesis was that there should be a sulfur compound made by organisms in the oceans that was stable enough against oxidation in water to allow its transfer to the air. Either the sulfur compound itself, or its atmospheric oxidation product, would have to return sulfur from the sea to the land surfaces. The most likely candidate for this role was deemed to be dimethylsulfide.

Newly published work done at the University of Maryland by first author Harry Oduro, together with UMD geochemist James Farquhar and marine biologist Kathryn Van Alstyne of Western Washington University, provides a tool for tracing and measuring the movement of sulfur through ocean organisms, the atmosphere and the land in ways that may help prove or disprove the controversial Gaia theory. Their study appears in this week's Online Early Edition of the Proceedings of the National Academy of Sciences (PNAS).

According to Oduro and his colleagues, this work presents the first direct measurements of the isotopic composition of dimethylsulfide and of its precursor dimethylsulfoniopropionate. These measurements reveal differences in the isotope ratios of these two sulfur compounds that are produced by macroalga and phytoplankton. These measurements (1) are linked to the compounds' metabolism by these ocean organisms and (2) carry implications for tracking dimethylsulfide emissions from the ocean to the atmosphere.

Sulfur, the tenth most abundant element in the universe, is part of many inorganic and organic compounds. Sulfur cycles sulfur through the land, atmosphere and living things and plays critical roles in both climate and in the health of organisms and ecosystems.

"Dimethylsulfide emissions play a role in climate regulation through transformation to aerosols that are thought to influence the earth's radiation balance," says Oduro, who conducted the research while completing a Ph.D. in geology & earth system sciences at Maryland and now is a postdoctoral fellow at the Massachusetts Institute of Technology. "We show that differences in isotopic composition of dimethylsulfide may vary in ways that will help us to refine estimates of its emission into the atmosphere and of its cycling in the oceans."

As with many other chemical elements, sulfur consists of different isotopes. All isotopes of an element are characterized by having the same number of electrons and protons but different numbers of neutrons. Therefore, isotopes of an element are characterized by identical chemical properties, but different mass and nuclear properties. As a result, it can be possible for scientists to use unique combinations of an element's radioactive isotopes as isotopic signatures through which compounds with that element can be traced.

"What Harry did in this research was to devise a way to isolate and measure the sulfur isotopic composition of these two sulfur compounds," says Farquhar, a professor in the University of Maryland's department of geology. "This was a very difficult measurement to do right, and his measurements revealed an unexpected variability in an isotopic signal that appears to be related to the way the sulfur is metabolized.

"Harry's work establishes that we should expect to see variability in the sulfur isotope signatures of these compounds in the oceans under different environmental conditions and for different organisms. I think this will ultimately be very important for using isotopes to trace the cycling of these compounds in the surface oceans as well as the flux of dimethylsulfide to the atmosphere. The ability to do this could help us answer important climate questions, and ultimately better predict climate changes. And it may even help us to better trace connections between dimethylsulfide emissions and sulfate aerosols, ultimately testing a coupling in the Gaia hypothesis," Farquhar says.

Media Contacts:
James Farquhar
Professor
Department of Geology
University of Maryland
(301) 405-5043
jfarquha@essic.umd.edu
Harry Oduro
Postdoctoral Fellow
MIT
(617)-324-3946
Hoduro@mit.edu

Lee Tune | EurekAlert!
Further information:
http://www.umd.edu

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>