Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM researchers find existence of large, deep magma chamber below Kilauea volcano

29.01.2014
New study offers new insight into the largely unknown internal plumbing of volcanoes

A new study led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science uncovered a previously unknown magma chamber deep below the most active volcano in the world – Kilauea. This is the first geophysical observation that large magma chambers exist in the deeper parts of the volcano system.



Scientists analyzed the seismic waves that travel through the volcano to understand the internal structure of the volcanic system. Using the seismic data, the researchers developed a three-dimensional velocity model of a magma anomaly to determine the size, depth and composition of the lava chamber, which is several kilometers in diameter and located at a depth of 8-11 km (5 – 6.8 miles).

"It was known before that Kilauea had small, shallow magma chambers," said Guoqing Lin, UM Rosenstiel School assistant professor of geology and geophysics and lead author of the study. "This study is the first geophysical observation that large magma chambers exist in the deep oceanic crust below."

The study also showed that the deep chamber is composed of "magma mush," a mixture of 10-percent magma and 90-percent rock. The crustal magma reservoir below Kilauea is similar to those widely observed beneath volcanoes located at mid-ocean ridges.

"Understanding these magma bodies are a high priority because of the hazard posed by the volcano," said Falk Amelung, co-author and professor of geology and geophysics at the UM Rosenstiel School. "Kilauea volcano produces many small earthquakes and paying particular attention to new seismic activity near this body will help us to better understand where future lava eruptions will come from."

Scientists are still unraveling the mysteries of the deep internal network of magma chambers and lava tubes of Kilauea, which has been in continuous eruption for more than 30 years and is currently the most active volcano in the world.

The study, titled "Seismic evidence for a crustal magma reservoir beneath the upper east rift zone of Kilauea volcano, Hawaii," was recently published in the online edition of the journal Geology. The study co-authors include: Lin, Amelung, Yan Lavalee of the University of Liverpool and Paul G. Okubo of the U.S. Geological Survey in Hawaii. The National Science Foundation funded the study.

Image: http://gallery.usgs.gov/images/08_18_2010/h41Ogs6FEa_08_18_2010/large/HVO
_and_Halemaumau_-_horizontal.jpg
About the University of Miami's Rosenstiel School The University of Miami is one of the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Diana Udel | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht NASA sees wind shear affecting Hurricane Ignacio
02.09.2015 | NASA/Goddard Space Flight Center

nachricht Oxygen oasis in Antarctic lake reflects Earth in the distant past
02.09.2015 | University of California - Davis

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

International research project gets high level of funding

02.09.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>