Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UM researchers find existence of large, deep magma chamber below Kilauea volcano

29.01.2014
New study offers new insight into the largely unknown internal plumbing of volcanoes

A new study led by scientists at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science uncovered a previously unknown magma chamber deep below the most active volcano in the world – Kilauea. This is the first geophysical observation that large magma chambers exist in the deeper parts of the volcano system.



Scientists analyzed the seismic waves that travel through the volcano to understand the internal structure of the volcanic system. Using the seismic data, the researchers developed a three-dimensional velocity model of a magma anomaly to determine the size, depth and composition of the lava chamber, which is several kilometers in diameter and located at a depth of 8-11 km (5 – 6.8 miles).

"It was known before that Kilauea had small, shallow magma chambers," said Guoqing Lin, UM Rosenstiel School assistant professor of geology and geophysics and lead author of the study. "This study is the first geophysical observation that large magma chambers exist in the deep oceanic crust below."

The study also showed that the deep chamber is composed of "magma mush," a mixture of 10-percent magma and 90-percent rock. The crustal magma reservoir below Kilauea is similar to those widely observed beneath volcanoes located at mid-ocean ridges.

"Understanding these magma bodies are a high priority because of the hazard posed by the volcano," said Falk Amelung, co-author and professor of geology and geophysics at the UM Rosenstiel School. "Kilauea volcano produces many small earthquakes and paying particular attention to new seismic activity near this body will help us to better understand where future lava eruptions will come from."

Scientists are still unraveling the mysteries of the deep internal network of magma chambers and lava tubes of Kilauea, which has been in continuous eruption for more than 30 years and is currently the most active volcano in the world.

The study, titled "Seismic evidence for a crustal magma reservoir beneath the upper east rift zone of Kilauea volcano, Hawaii," was recently published in the online edition of the journal Geology. The study co-authors include: Lin, Amelung, Yan Lavalee of the University of Liverpool and Paul G. Okubo of the U.S. Geological Survey in Hawaii. The National Science Foundation funded the study.

Image: http://gallery.usgs.gov/images/08_18_2010/h41Ogs6FEa_08_18_2010/large/HVO
_and_Halemaumau_-_horizontal.jpg
About the University of Miami's Rosenstiel School The University of Miami is one of the largest private research institution in the southeastern United States. The University's mission is to provide quality education, attract and retain outstanding students, support the faculty and their research, and build an endowment for University initiatives. Founded in the 1940's, the Rosenstiel School of Marine & Atmospheric Science has grown into one of the world's premier marine and atmospheric research institutions. Offering dynamic interdisciplinary academics, the Rosenstiel School is dedicated to helping communities to better understand the planet, participating in the establishment of environmental policies, and aiding in the improvement of society and quality of life.

Diana Udel | EurekAlert!
Further information:
http://www.rsmas.miami.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>