Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UH geologists find parts of Northwest Houston sinking rapidly

29.09.2010
Researchers analyze decade's worth of GPS data for study

A large section of northwestern Harris County – particularly the Jersey Village area – is sinking rapidly, according to a University of Houston (UH) geologist who has analyzed GPS data measuring ground elevation in the Houston area.

Some points in Jersey Village are subsiding by up to 5.5 centimeters (about 2 inches) a year, said Shuhab Khan, an associate professor of geology at UH. Khan, along with UH geology professor Kevin Burke and former Ph.D. student and UH alumnus Richard Engelkemeir, studied a decade's worth of detailed GPS data measuring the elevation of various points throughout the Houston area. They recently published their findings in the journal Tectonophysics, an international medium for the publication of research in the fields of geotectonics, geology and physics of the Earth's crust and interior.

"A sprawling area of northwestern Harris County is gradually subsiding, but the points in Jersey Village are sinking fastest," Khan said. "The area is roughly 30 kilometers by 30 kilometers, which is the equivalent of about 18 miles by 18 miles."

The raw data was obtained from the Houston-Galveston Coastal Subsidence District. Khan's study processed and analyzed GPS data from more than two dozen measurement points throughout the county, covering 1995 to 2005. Extrapolating data from six measurement stations, Khan roughly marks the boundaries of the vast subsiding area. At three of those measurement spots, centered around Jersey Village, the sinking was particularly fast.

"Because GPS can pinpoint location with millimeter precision, it is an excellent tool to measure even the most subtle changes over time in the ground," Khan said. "The most likely reason for the sinking of Jersey Village is the withdrawal of water from deep beneath the surface. While groundwater withdrawal has ceased in most of the Houston area, it continues in the northwestern part of the county that has seen a rapid growth in population."

The fate of the Brownwood neighborhood near Baytown illustrates the potential consequences of rapid subsidence, Khan said. When the residential subdivision was first developed in the 1930s, ground elevation was about 3 meters (nearly 10 feet) above sea level. Forty years later, the neighborhood stood just half a meter above sea level and was subject to frequent flooding. In 1983, Hurricane Alicia destroyed the subdivision, and the area became the Baytown Nature Center. The sinking of Brownwood was attributed to the massive groundwater withdrawal by the petrochemical plants along the Houston Ship Channel.

The research team hopes the new data that pinpoint precisely where and how quickly the ground is moving can aid the region's builders and city planners to mitigate the damage caused by the ongoing subsidence northwest of Houston.

Khan's analysis also showed some gradual rising southeast of Houston along the coast. The coastal area has several vast salt domes deep beneath the surface. Since salt has a lower density than common crustal rocks, it rises and pushes up the ground. He said that further study also might link salt dome activity along the coast to the surface movements occurring elsewhere in the region.

Khan's previous work on the region's elevation has already garnered widespread attention from local media, homeowners and builders. Geologists had long known about the existence of faults in southeast Texas, but Khan and Engelkemeir produced a comprehensive map in 2008 pinpointing the precise locations of some 300 faults traversing the Houston area.

The research team stressed these local fault lines are not the kinds that wreak havoc in earthquake-prone California, but they can move up to an inch per year. Such movement over several years can cause serious damage to buildings and streets that straddle a fault line.

For related research, visit
http://www.uh.edu/news-events/pdf/2008%20faultline%20research%20PR.
About the University of Houston
The University of Houston is a comprehensive national research institution serving the globally competitive Houston and Gulf Coast Region by providing world-class faculty, experiential learning and strategic industry partnerships. UH serves more than 38,500 students in the nation's fourth-largest city, located in the most ethnically and culturally diverse region of the country.

About the College of Natural Sciences and Mathematics

The UH College of Natural Sciences and Mathematics, with 181 ranked faculty and approximately 4,500 students, offers bachelor's, master's and doctoral degrees in the natural sciences, computational sciences and mathematics. Faculty members in the departments of biology and biochemistry, chemistry, computer science, earth and atmospheric sciences, mathematics and physics conduct internationally recognized research in collaboration with industry, Texas Medical Center institutions, NASA and others worldwide.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, visit http://www.uh.edu/news-events/mailing-lists/sciencelistserv/index.php.

For additional news alerts about UH, follow us on Facebook at http://www.facebook.com/UHNewsEvents and Twitter at http://twitter.com/UH_News.

Lisa Merkl | EurekAlert!
Further information:
http://www.uh.edu

More articles from Earth Sciences:

nachricht NASA eyes Pineapple Express soaking California
24.02.2017 | NASA/Goddard Space Flight Center

nachricht 'Quartz' crystals at the Earth's core power its magnetic field
23.02.2017 | Tokyo Institute of Technology

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>