Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF scientists name new ancient camels from Panama Canal excavation

01.03.2012
The discovery of two new extinct camel species by University of Florida scientists sheds new light on the history of the tropics, a region containing more than half the world's biodiversity and some of its most important ecosystems.

Appearing online this week in the Journal of Vertebrate Paleontology, the study is the first published description of a fossil mammal discovered as part of an international project in Panama. Funded with a grant from the National Science Foundation, UF paleontologists and geologists are working with the Panama Canal Authority and scientists at the Smithsonian Tropical Research Institute to make the most of a five-year window of excavations during Panama Canal expansions that began in 2009.

The discovery by Florida Museum of Natural History researchers extends the distribution of mammals to their southernmost point in the ancient tropics of Central America. The tropics contain some of the world's most important ecosystems, including rain forests that regulate climate systems and serve as a vital source of food and medicine, yet little is known of their history because lush vegetation prevents paleontological excavations.

"We're discovering this fabulous new diversity of animals that lived in Central America that we didn't even know about before," said co-author Bruce MacFadden, vertebrate paleontology curator at the Florida Museum on the UF campus and co-principal investigator on the NSF grant funding the project. "The family originated about 30 million years ago and they're found widespread throughout North America, but prior to this discovery, they were unknown south of Mexico."

Researchers described two species of ancient camels that are also the oldest mammals found in Panama: Aguascalietia panamaensis and Aguascalientia minuta. Distinguished from each other mainly by their size, the camels belong to an evolutionary branch of the camel family separate from the one that gave rise to modern camels based on different proportions of teeth and elongated jaws.

"Some descriptions say these are 'crocodile-like' camels because they have more elongated snouts than you would expect," said lead author Aldo Rincon, a UF geology doctoral student. "They were probably browsers in the forests of the ancient tropics. We can say that because the crowns are really short."

Rincon discovered the fossils in the Las Cascadas formation, unearthing pieces of a jaw belonging to the same animal over a span of two years, he said.

"When I came back to the museum, I started putting everything together and realized, 'Oh wow, I have a nearly complete jaw,' " Rincon said.

The study shows that despite Central America's close proximity to South America, there was no connection between continents because mammals in the area 20 million years ago all had North American origins. The Isthmus of Panama formed about 15 million years later and the fauna crossed to South America 2.5 to 3 million years ago, MacFadden said.

Barry Albright, a professor of earth science at the University of North Florida who studied the early Miocene fauna of the Gulf Coast Plain, said he was surprised by the similarity of the Central American fauna.

"To me, it's slightly unexpected," Albright said. "That's a large latitudinal gradient between the Gulf Coastal Plain and Panama, yet we're seeing the same mammals, so perhaps that tells us something about climate over that interval of time and dispersal patterns of some mammals over that interval of time."

Camels belong to a group of even-toed ungulates that includes cattle, goats, sheep, deer, buffalo and pigs. Other fossil mammals discovered in Panama from the early Miocene have been restricted to those also found in North America at the time. While researchers are sure the ancient camels were herbivores that likely browsed in forests, they are still analyzing seeds and pollen to better understand the environment of the ancient tropics.

"People think of camels as being in the Old World, but their distribution in the past is different than what we know today," MacFadden said. "The ancestors of llamas originated in North America and then when the land bridge formed about 4 to 5 million years ago, they dispersed into South America and evolved into the llama, alpaca, guanaco and vicuña."

Researchers will continue excavating deposits from the Panama Canal during construction to widen and straighten the channel and build new locks, expected to continue through 2014. The project is funded by a $3.8 million NSF grant to develop partnerships between the U.S. and Panama and engage the next generation of scientists in paleontological and geological discoveries along the canal. Study co-authors include Jonathan Bloch of UF, and Catalina Suarez and Carlos Jaramillo of the Smithsonian Tropical Research Institute.

Paul Ramey | EurekAlert!
Further information:
http://www.ufl.edu

Further reports about: Albright Gulf of Maine region Miocene NSF Panama Tropical Research tropical diseases

More articles from Earth Sciences:

nachricht A new dead zone in the Indian Ocean could impact future marine nutrient balance
06.12.2016 | Max-Planck-Institut für marine Mikrobiologie

nachricht NASA's AIM observes early noctilucent ice clouds over Antarctica
05.12.2016 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>