Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF research provides new understanding of bizarre extinct mammal

12.10.2010
University of Florida researchers presenting new fossil evidence of an exceptionally well-preserved 55-million-year-old North American mammal have found it shares a common ancestor with rodents and primates, including humans.

The study, scheduled to appear in the Oct. 11 online edition of the Zoological Journal of the Linnean Society, describes the cranial anatomy of the extinct mammal, Labidolemur kayi.

High resolution CT scans of the specimens allowed researchers to study minute details in the skull, including bone structures smaller than one-tenth of a millimeter. Similarities in bone features with other mammals show L. kayi's living relatives are rodents, rabbits, flying lemurs, tree shrews and primates.

Researchers said the new information will aide future studies to better understand the origin of primates.

"The specimens are among the only skulls of apatemyids known that aren't squashed completely flat," said study co-author Jonathan Bloch, an associate curator of vertebrate paleontology at the Florida Museum of Natural History on the UF campus. "They're preserved in three dimensions, which allows us to look at the morphology of the bones in a way that we never could before."

Scientists have disputed the relationships of Apatemyidae, the family that includes L. kayi, for more than a century because of their unusual physical characteristics. With can opener-shaped upper front teeth and two unusually long fingers, apatemyids have been compared to a variety of animals, from opossums to woodpeckers.

"There are only a few examples in the history of mammals where you get such an incredibly odd ecological adaptation," Bloch said.

Like a woodpecker's method of feeding, L. kayi used percussive foraging, or tapping on trees, to locate insects. It stood less than a foot tall, was capable of jumping between trees and looked like a squirrel with a couple of really long fingers, similar to the aye-aye, a lemur native to Madagascar, Bloch said.

Apatemyids have been preserved for tens of millions of years and are well known from Europe and North America.

The skeletons analyzed in the publication were recovered from freshwater limestone in the Bighorn Basin by co-author Peter Houde of New Mexico State University. Located just east of Yellowstone National Park in Wyoming, the site is known as one of the best in the world for studying the evolution of mammals during the 10 million years following the extinction of the dinosaurs, Bloch said.

Mary Silcox, first author of the study and a research associate at the Florida Museum, said scans of the specimens began about 10 years ago, during her postdoctoral work at The Pennsylvania State University.

"It's not like medical CT, it's actually an industrial CT scanner," said Silcox, an assistant professor of anthropology at the University of Toronto Scarborough. "Because this is a small animal, we needed to be able to study it at a very high resolution. The high resolution CT data were a critical part."

Doug Boyer of Stony Brook University is also a co-author of the study, part of the team's larger research to understand the relationships of apatemyids to other mammals. Bloch and colleagues are currently writing a detailed analysis of L. kayi's skeleton.

John Wible, curator of mammals at the Carnegie Museum of Natural History and one of the researchers who reviewed the study, said it provides valuable information for understanding the evolutionary relationships of mammals.

"It is now clear that any assessment of the origins of primates in the future will have to include apatemyids," Wible said. "Apatemyids are not some freakish dead-end, but significant members of our own history."

Jon Bloch | EurekAlert!
Further information:
http://www.flmnh.ufl.edu

More articles from Earth Sciences:

nachricht New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland
19.01.2017 | University of Gothenburg

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

New Study Will Help Find the Best Locations for Thermal Power Stations in Iceland

19.01.2017 | Earth Sciences

Not of Divided Mind

19.01.2017 | Life Sciences

Molecule flash mob

19.01.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>