Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSB scientists propose Antarctic location for 'missing' ice sheet

27.08.2009
New research by scientists at UC Santa Barbara indicates a possible Antarctic location for ice that seemed to be missing at a key point in climate history 34 million years ago.

The research, which has important implications for climate change, is described in a paper published today in Geophysical Research Letters, a journal of the American Geophysical Union.

"Using data from prior geological studies, we have constructed a model for the topography of West Antarctic bedrock at the time of the start of the global climate transition from warm 'greenhouse' earth to the current cool 'icehouse' earth some 34 million years ago," explained Douglas S. Wilson, first author and an associate research geophysicist with UCSB's Department of Earth Science and Marine Science Institute.

Wilson and his co-author, Bruce Luyendyk, a professor in the Department of Earth Science, discovered that, contrary to most current models for bedrock elevations of West Antarctica, the bedrock in the past was of much higher elevation and covered a much larger area than today. Current models assume that an archipelago of large islands existed under the ice at the start of the climate transition, similar to today, but Wilson and Luyendyk found that does not fit their new model. In fact, the authors state that the land area above sea level of West Antarctica was about 25 percent greater in the past.

The existing theory leaves West Antarctica in a minor role in terms of the ice accumulation beginning 34 million years ago. Ice sheet growth on earth is believed to have developed on the higher and larger East Antarctic subcontinent while West Antarctica joined the process later around 14 million years ago. "But a problem exists with leaving West Antarctica out of the early ice history," said Wilson. "From other evidence, it is believed that the amount of ice that grew on earth at the 34 million year climate transition was too large to be accounted for by formation on East Antarctica alone, the most obvious location for ice sheet growth. Another site is needed to host the extra missing ice."

Evidence for that large mass of ice comes from two sources: the chemical and isotopic composition in shell material of marine microfossils, which are sensitive to ocean temperatures and the amount of ice on land; and from geologic records of lowered sea level at the time that indicate how much ice formed on land to produce the sea level drop.

The new study, by showing that West Antarctica had a higher elevation 34 million years ago than previously thought, reveals a possible site for the accumulation of the early ice that is unaccounted for. "Preliminary climate modeling by researchers at Pennsylvania State University demonstrates that this new model of higher elevation West Antarctica bedrock topography can indeed host the missing ice," said Luyendyk. "Our results, therefore, have opened up a new paradigm for the history of the growth of the great global ice sheets. Both East and West Antarctica hosted the growing ice."

The new hypothesis may solve another conflict among climate scientists. Given that more ice grew than could be hosted on East Antarctica alone, some researchers have proposed that the missing ice formed in the northern hemisphere. This would have been many millions of years before the well-known documentation of ice growth there, which started about three million years ago; evidence for ice sheets in the northern hemisphere prior to that time is not established. The new bedrock model shows it is not necessary to have ice hosted in the northern polar regions at the start of global climate transition; West Antarctica could have accommodated the extra ice.

Luyendyk is also affiliated with UCSB's Institute for Crustal Studies. The National Science Foundation's Office of Polar Programs funded the research.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Earth Sciences:

nachricht Water - as the underlying driver of the Earth’s carbon cycle
17.01.2017 | Max-Planck-Institut für Biogeochemie

nachricht Modeling magma to find copper
13.01.2017 | Université de Genève

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>