Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Strong Ally in NASA’s Call to Find Dangerous Asteroids

02.07.2013
In line with NASA's recently issued "Asteroid Grand Challenge," the UA is at the forefront of discovering and tracking space rocks, engaging the global community in the effort and is poised to send a spacecraft to a potentially hazardous asteroid to bring a sample back to Earth.
NASA has issued an “Asteroid Grand Challenge” focused on finding all asteroids that could present a threat to Earth.

The initiative, aimed at partners in national and international government, industry, academia and with citizen scientists, includes the University of Arizona with its unsurpassed track record in asteroid hunting, a citizen science asteroid program recently awarded with a White House award and leadership in the first NASA mission to return a sample from a potentially hazardous asteroid.

When it comes to potentially hazardous asteroids, NASA officials say, mankind is well advised to sweat the small stuff.

While scientists say that 95 percent of asteroids larger than one kilometer have been discovered, countless small, difficult-to-spot space rocks are whirling through space, with an unknown number possibly tumbling along a collision course with Earth.

The fireball that blew up over Chelyabinsk in Russia in February 2013 served as a reminder that even a house-sized object can unleash a blast capable of injuring about 1,500 people – in this case, mostly from shattered glass caused by the air blast – if it goes undetected until it plunges into the Earth’s atmosphere.

In addition to high-tech detection methods and developing a spacecraft capable of rendezvousing with an asteroid in deep space, UA researchers also pursue programs that aid in the hunt for the next threat and enlist citizen scientists in characterizing asteroids.

The UA’s Catalina Sky Survey remains the most productive asteroid-discovery program operating today, finding new near-Earth objects at a rate of around 600 per year. NASA’s Near Earth Object (NEO) Program lists the Catalina Sky Survey as “currently the most efficient NEO survey program for finding new near-Earth objects.”

“Nobody has discovered more asteroids than we have,” said Tim Swindle, head of the UA’s Department of Planetary Sciences in the College of Science, referring to Spacewatch and the Catalina Sky Survey, both programs created at the UA to find and track asteroids that could pose a threat to Earth. “As far as asteroids go, we are the university that does asteroids more than anybody else.”

The Catalina Sky Survey is also the most sensitive survey for finding small near-Earth asteroids in the 15 to 30-foot size range, which are candidate targets for NASA’s Asteroid Redirect Mission (ARM), according to Eric Christensen, the Survey’s newly appointed principal investigator.

Christensen said ARM targets – small asteroids in Earth-like orbits – are difficult to discover due to their small size and the fact that they are only “discoverable” for as little as a few days before they fade.

“The current rate of discovery for these kinds of objects is too low to find enough good candidates for ARM mission planning” Christensen explained. “It needs to increase by a factor of at least 10 to support such a mission. The Catalina Sky Survey is currently in the midst of upgrades to both of our survey telescopes on Mt. Lemmon, which will increase their overall capability and their sensitivity to ARM candidate targets.”

“As we keep getting better at finding these things, we discover that such close approaches happen more frequently than you might think,” said Ed Beshore, former director of the Catalina Sky Survey, about object 2012 DA14, better known as the “Valentine asteroid,” which buzzed the Earth on February 15 at a distance of about 17,200 miles or 27,680 kilometers, closer than geostationary satellite orbit.

Even before NASA rolled out its new initiative to involve creative minds to ramp up the search for hazardous asteroids, Dolores Hill and Carl Hergenrother of the UA Lunar and Planetary Laboratory began the citizen science program called Target Asteroids! as part of the OSIRIS-REx Education and Public Outreach program in 2011.

Target Asteroids! is aimed at engaging amateur astronomers in studying asteroid targets for future missions and at increasing our knowledge of the near-Earth asteroid population.

To that end, volunteer observers track asteroids over time, measure their brightness and gather clues about their shape, spin and composition. In the program's first year alone, 138 amateurs registered from 25 states and 26 countries and provided 87 data sets on 17 near-Earth asteroids.

Some use custom-made, often automated telescopes equipped with CCD cameras in their backyards. Others use home computers to make remote observations with more powerful telescopes states or continents away. Many belong to leading national and international amateur astronomy organizations with members ranging from retirees to school kids.

“The Target Asteroids! program provides an opportunity for amateur astronomers to track a special list of near-Earth asteroids important to the OSIRIS-REx mission and future sample return missions,” said Dolores Hill, who was recognized as one of 12 White House Champions of Change for citizen science for coming up with the concept.

“In the case of the Russian meteor for example, the asteroid came from the glare of the sun and could not be detected by large observatories,” Hill said. “It could have been detected farther out in its orbit if the right telescope was looking at the right place and the right time.”

“We look forward to expanding the Target Asteroids! list to support NASA's Grand Challenge by including targets for a manned mission and the redirection of an asteroid.”

“The next step in asteroid research is figuring how to get to an asteroid, how to maneuver around it, and find out more about it by bringing a sample back to Earth,” said Swindle. “That is what we’ll take on with the OSIRIS-REx mission. We are in many ways the big player in figuring out how to deal with this.” Swindle went on to say that OSIRIS-REx will lead to a greater understanding of the forces that cause asteroids to become collision threats with the Earth.

OSIRIS-REx, led by the UA, is NASA’s mission to send a spacecraft to return a sample from asteroid Bennu, one of several known asteroids that occasionally come dangerously close to Earth. Bennu is believed to be a primitive object, created shortly after the formation of the solar system more than 4.5 billion years ago. Earth-based studies of the sample should yield valuable clues about the chemistry that led to the origin of life on Earth.

OSIRIS-REx is led by UA planetary science professor and principal investigator Dante Lauretta, along with Ed Beshore as the project’s deputy principal investigator. In preparation for its 2018 encounter the UA has carefully selected Bennu, the OSIRIS-REx target asteroid, for maximum scientific value. Hergenrother, along with other scientists on the OSIRIS-REx team, has conducted extensive multi-year studies of that asteroid using ground- and space-based telescopes. All of this effort has resulted in a spacecraft and instrument suite that has a high probability of success.

CONTACTS:

Daniel Stolte, University Communications, The University of Arizona:
520-626-4402; stolte@email.arizona.edu
Links: OSIRIS-REx Mission Website: http://osiris-rex.lpl.arizona.edu

Daniel Stolte | University of Arizona
Further information:
http://uanews.org/story/ua-strong-ally-in-nasa-s-call-to-find-dangerous-asteroids

More articles from Earth Sciences:

nachricht Colorado River's connection with the ocean was a punctuated affair
16.11.2017 | University of Oregon

nachricht Researchers create largest, longest multiphysics earthquake simulation to date
14.11.2017 | Gauss Centre for Supercomputing

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>