Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA scientists seek new emphases in Arctic climate change research

15.09.2009
Much of circumpolar Arctic research focuses on the physical, direct changes resulting from climate warming such as sea ice retreat and temperature increases.

“What’s understudied is the living component of the Arctic and that includes humans,” said Syndonia “Donie” Bret-Harte, associate professor of biology at the University of Alaska Fairbanks and co-author of a paper to be published September 11, 2009 in the journal Science.

The paper reviews current knowledge on the ecological consequences of climate change on the circumpolar Arctic and issues a call for action in several areas of global climate change research.

“Humans live in the Arctic with plants and animals and we care about the ecosystem services such as filtering water, fiber and food production and cultural values that the Arctic provides” said Bret-Harte, who specializes in Arctic plant ecology in Alaska.

The global average surface temperature has increased by 0.72 F (0.4 C) over the past 150 years and the average Arctic temperature is expected to increase by 6 C. “That’s a mind bogglingly large change to contemplate and keep in mind that no one lives at the average temperature,” Bret-Harte said.

The international team of scientists who collaborated on this paper reviewed dozens of research documents on the effects of circumpolar Arctic warming. They note that numerous direct effects including lengthening of growing season following a rapid spring melt, earlier plant flowering and appearance of insects following a warmer spring, deaths of newborn seal pups following melting of their under-snow birthing chambers have other, often more subtle, indirect effects on plants, animals and humans that warrants increased attention.

Understanding how changes in plant and animal populations affect each other and how they affect the physical or nonliving components of the Arctic is critical to understanding how climate warming will change the Arctic.

One effect studied intensively at the UAF Institute of Arctic Biology Toolik Field Station on Alaska’s North Slope is shrub expansion on the tundra.

“Shrubs are increasing on the tundra as the climate warms and more shrubs will lead to more warming in the spring,” said Bret-Harte. Snow reflects most incoming radiation, which is simply light that can transfer heat. Shrubs that stick out of the snow in spring absorb radiation and give off heat. In this positive feedback cycle, the heating of the air immediately above the snow warms the snow, causing it to melt sooner. Warmer soils lead to increased nutrient availability, which contributes to greater shrub growth, which then contributes to still more warming.

Another effect studied intensively in Alaska occurs under the snow.

“We need to better understand how winter comes and goes and how that drives shifts in plant-animal interactions,” said Jeff Welker, professor of biology at the University of Alaska Anchorage. When it didn’t snow at Toolik Field Station until Thanksgiving a few years ago the soil got cold and stayed cold. So cold that microbes in the soil were barely active. The spring green-up was slow in coming and likely affected caribou forage, says Welker.

In 2008, the snow started falling in September and never quit. The warmer winter soils with their active microbes were insulated from the cold and were able to provide nutrients to plants that stimulated growth.

The authors call for immediate attention to the conservation of Arctic ecosystems; understanding the ecology of Arctic winters; understanding extreme events such as wildfires and extended droughts; and the need for more baseline studies to improve predictions.

“This paper identifies gaps in our knowledge, what we need to be doing and where the public needs to spend its money,” said Welker.

The research team was led by Eric Post, Penn State University, and included biologists, ecologists, geographers, botanists, anthropologists, and fish and wildlife experts from the University of Alberta and the Canadian Wildlife Service in Canada; Aarhus University and the University of Copenhagen in Denmark; the University of Helsinki in Finland; the Arctic Ecology Research Group in France; the Greenland Institute of Natural Resources in Greenland; the University Centre on Svalbard, the University of Tromsø, and the Centre for Saami Studies in Norway; the University of Aberdeen and the University of Stirling in Scotland; Lund University and the Abisko Scientific Research Station in Sweden; the University of Sheffield in the UK; and the Institute of Arctic Biology and the U.S. Geological Survey at the University of Alaska Fairbanks, the Environment and Natural Resources Institute of the University of Alaska Anchorage, and the University of Washington in the United States.

Support was provided by Aarhus University, The Danish Polar Center, and the U.S. National Science Foundation.

CONTACT: Syndonia “Donie” Bret-Harte, associate professor of biology, Institute of Arctic Biology University of Alaska Fairbanks. 907-474-5434, ffmsb@uaf.edu.

Jeffrey Welker, professor of biology, director, Environment and Natural Resources Institute University of Alaska Anchorage. afjmw1@uaa.alaska.edu, 907-257-2701

Marie Gilbert, information officer, Institute of Arctic Biology, University of Alaska Fairbanks. 907-474-7412, megilbert@alaska.edu

Marie Gilbert | EurekAlert!
Further information:
http://www.alaska.edu

More articles from Earth Sciences:

nachricht From volcano's slope, NASA instrument looks sky high and to the future
27.04.2017 | NASA/Goddard Space Flight Center

nachricht Penn researchers quantify the changes that lightning inspires in rock
27.04.2017 | University of Pennsylvania

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>