Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA scientists seek new emphases in Arctic climate change research

15.09.2009
Much of circumpolar Arctic research focuses on the physical, direct changes resulting from climate warming such as sea ice retreat and temperature increases.

“What’s understudied is the living component of the Arctic and that includes humans,” said Syndonia “Donie” Bret-Harte, associate professor of biology at the University of Alaska Fairbanks and co-author of a paper to be published September 11, 2009 in the journal Science.

The paper reviews current knowledge on the ecological consequences of climate change on the circumpolar Arctic and issues a call for action in several areas of global climate change research.

“Humans live in the Arctic with plants and animals and we care about the ecosystem services such as filtering water, fiber and food production and cultural values that the Arctic provides” said Bret-Harte, who specializes in Arctic plant ecology in Alaska.

The global average surface temperature has increased by 0.72 F (0.4 C) over the past 150 years and the average Arctic temperature is expected to increase by 6 C. “That’s a mind bogglingly large change to contemplate and keep in mind that no one lives at the average temperature,” Bret-Harte said.

The international team of scientists who collaborated on this paper reviewed dozens of research documents on the effects of circumpolar Arctic warming. They note that numerous direct effects including lengthening of growing season following a rapid spring melt, earlier plant flowering and appearance of insects following a warmer spring, deaths of newborn seal pups following melting of their under-snow birthing chambers have other, often more subtle, indirect effects on plants, animals and humans that warrants increased attention.

Understanding how changes in plant and animal populations affect each other and how they affect the physical or nonliving components of the Arctic is critical to understanding how climate warming will change the Arctic.

One effect studied intensively at the UAF Institute of Arctic Biology Toolik Field Station on Alaska’s North Slope is shrub expansion on the tundra.

“Shrubs are increasing on the tundra as the climate warms and more shrubs will lead to more warming in the spring,” said Bret-Harte. Snow reflects most incoming radiation, which is simply light that can transfer heat. Shrubs that stick out of the snow in spring absorb radiation and give off heat. In this positive feedback cycle, the heating of the air immediately above the snow warms the snow, causing it to melt sooner. Warmer soils lead to increased nutrient availability, which contributes to greater shrub growth, which then contributes to still more warming.

Another effect studied intensively in Alaska occurs under the snow.

“We need to better understand how winter comes and goes and how that drives shifts in plant-animal interactions,” said Jeff Welker, professor of biology at the University of Alaska Anchorage. When it didn’t snow at Toolik Field Station until Thanksgiving a few years ago the soil got cold and stayed cold. So cold that microbes in the soil were barely active. The spring green-up was slow in coming and likely affected caribou forage, says Welker.

In 2008, the snow started falling in September and never quit. The warmer winter soils with their active microbes were insulated from the cold and were able to provide nutrients to plants that stimulated growth.

The authors call for immediate attention to the conservation of Arctic ecosystems; understanding the ecology of Arctic winters; understanding extreme events such as wildfires and extended droughts; and the need for more baseline studies to improve predictions.

“This paper identifies gaps in our knowledge, what we need to be doing and where the public needs to spend its money,” said Welker.

The research team was led by Eric Post, Penn State University, and included biologists, ecologists, geographers, botanists, anthropologists, and fish and wildlife experts from the University of Alberta and the Canadian Wildlife Service in Canada; Aarhus University and the University of Copenhagen in Denmark; the University of Helsinki in Finland; the Arctic Ecology Research Group in France; the Greenland Institute of Natural Resources in Greenland; the University Centre on Svalbard, the University of Tromsø, and the Centre for Saami Studies in Norway; the University of Aberdeen and the University of Stirling in Scotland; Lund University and the Abisko Scientific Research Station in Sweden; the University of Sheffield in the UK; and the Institute of Arctic Biology and the U.S. Geological Survey at the University of Alaska Fairbanks, the Environment and Natural Resources Institute of the University of Alaska Anchorage, and the University of Washington in the United States.

Support was provided by Aarhus University, The Danish Polar Center, and the U.S. National Science Foundation.

CONTACT: Syndonia “Donie” Bret-Harte, associate professor of biology, Institute of Arctic Biology University of Alaska Fairbanks. 907-474-5434, ffmsb@uaf.edu.

Jeffrey Welker, professor of biology, director, Environment and Natural Resources Institute University of Alaska Anchorage. afjmw1@uaa.alaska.edu, 907-257-2701

Marie Gilbert, information officer, Institute of Arctic Biology, University of Alaska Fairbanks. 907-474-7412, megilbert@alaska.edu

Marie Gilbert | EurekAlert!
Further information:
http://www.alaska.edu

More articles from Earth Sciences:

nachricht Predicting eruptions using satellites and math
28.06.2017 | Frontiers

nachricht NASA sees quick development of Hurricane Dora
27.06.2017 | NASA/Goddard Space Flight Center

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>