Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA scientists seek new emphases in Arctic climate change research

15.09.2009
Much of circumpolar Arctic research focuses on the physical, direct changes resulting from climate warming such as sea ice retreat and temperature increases.

“What’s understudied is the living component of the Arctic and that includes humans,” said Syndonia “Donie” Bret-Harte, associate professor of biology at the University of Alaska Fairbanks and co-author of a paper to be published September 11, 2009 in the journal Science.

The paper reviews current knowledge on the ecological consequences of climate change on the circumpolar Arctic and issues a call for action in several areas of global climate change research.

“Humans live in the Arctic with plants and animals and we care about the ecosystem services such as filtering water, fiber and food production and cultural values that the Arctic provides” said Bret-Harte, who specializes in Arctic plant ecology in Alaska.

The global average surface temperature has increased by 0.72 F (0.4 C) over the past 150 years and the average Arctic temperature is expected to increase by 6 C. “That’s a mind bogglingly large change to contemplate and keep in mind that no one lives at the average temperature,” Bret-Harte said.

The international team of scientists who collaborated on this paper reviewed dozens of research documents on the effects of circumpolar Arctic warming. They note that numerous direct effects including lengthening of growing season following a rapid spring melt, earlier plant flowering and appearance of insects following a warmer spring, deaths of newborn seal pups following melting of their under-snow birthing chambers have other, often more subtle, indirect effects on plants, animals and humans that warrants increased attention.

Understanding how changes in plant and animal populations affect each other and how they affect the physical or nonliving components of the Arctic is critical to understanding how climate warming will change the Arctic.

One effect studied intensively at the UAF Institute of Arctic Biology Toolik Field Station on Alaska’s North Slope is shrub expansion on the tundra.

“Shrubs are increasing on the tundra as the climate warms and more shrubs will lead to more warming in the spring,” said Bret-Harte. Snow reflects most incoming radiation, which is simply light that can transfer heat. Shrubs that stick out of the snow in spring absorb radiation and give off heat. In this positive feedback cycle, the heating of the air immediately above the snow warms the snow, causing it to melt sooner. Warmer soils lead to increased nutrient availability, which contributes to greater shrub growth, which then contributes to still more warming.

Another effect studied intensively in Alaska occurs under the snow.

“We need to better understand how winter comes and goes and how that drives shifts in plant-animal interactions,” said Jeff Welker, professor of biology at the University of Alaska Anchorage. When it didn’t snow at Toolik Field Station until Thanksgiving a few years ago the soil got cold and stayed cold. So cold that microbes in the soil were barely active. The spring green-up was slow in coming and likely affected caribou forage, says Welker.

In 2008, the snow started falling in September and never quit. The warmer winter soils with their active microbes were insulated from the cold and were able to provide nutrients to plants that stimulated growth.

The authors call for immediate attention to the conservation of Arctic ecosystems; understanding the ecology of Arctic winters; understanding extreme events such as wildfires and extended droughts; and the need for more baseline studies to improve predictions.

“This paper identifies gaps in our knowledge, what we need to be doing and where the public needs to spend its money,” said Welker.

The research team was led by Eric Post, Penn State University, and included biologists, ecologists, geographers, botanists, anthropologists, and fish and wildlife experts from the University of Alberta and the Canadian Wildlife Service in Canada; Aarhus University and the University of Copenhagen in Denmark; the University of Helsinki in Finland; the Arctic Ecology Research Group in France; the Greenland Institute of Natural Resources in Greenland; the University Centre on Svalbard, the University of Tromsø, and the Centre for Saami Studies in Norway; the University of Aberdeen and the University of Stirling in Scotland; Lund University and the Abisko Scientific Research Station in Sweden; the University of Sheffield in the UK; and the Institute of Arctic Biology and the U.S. Geological Survey at the University of Alaska Fairbanks, the Environment and Natural Resources Institute of the University of Alaska Anchorage, and the University of Washington in the United States.

Support was provided by Aarhus University, The Danish Polar Center, and the U.S. National Science Foundation.

CONTACT: Syndonia “Donie” Bret-Harte, associate professor of biology, Institute of Arctic Biology University of Alaska Fairbanks. 907-474-5434, ffmsb@uaf.edu.

Jeffrey Welker, professor of biology, director, Environment and Natural Resources Institute University of Alaska Anchorage. afjmw1@uaa.alaska.edu, 907-257-2701

Marie Gilbert, information officer, Institute of Arctic Biology, University of Alaska Fairbanks. 907-474-7412, megilbert@alaska.edu

Marie Gilbert | EurekAlert!
Further information:
http://www.alaska.edu

More articles from Earth Sciences:

nachricht Six-decade-old space mystery solved with shoebox-sized satellite called a CubeSat
15.12.2017 | National Science Foundation

nachricht NSF-funded researchers find that ice sheet is dynamic and has repeatedly grown and shrunk
15.12.2017 | National Science Foundation

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>