Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Scientists Discover Quantum Mechanical 'Hurricanes' Form Spontaneously

16.10.2008
University of Arizona scientists experimenting with some of the coldest gases in the universe have discovered that when atoms in the gas get cold enough, they can spontaneously spin up into what might be described as quantum mechanical twisters or hurricanes.

The surprising experimental results agree with independent numerical simulations produced by collaborating scientists at the University of Queensland in Australia. The UA and Australian researchers are reporting the results of the research in Oct. 16 issue of the journal Nature.

The results are of great interest because they reveal something fundamentally new about certain kinds of "phase transitions," and nature is replete with phase transitions.

Common phase transitions include liquid water freezing to ice, or liquid water boiling to steam. Another common phase transition occurs in proteins when raw eggs are cooked. More exotic examples of phase transitions include the cooling of materials until they become superconductors, and, on the scale of the universe, the phase transition that transformed the early universe from a hot, dense system born from the Big Bang into the universe with protons, electrons, structure and forces observed today.

A group of UA scientists headed by optical sciences associate professor Brian P.
Anderson uses lasers and magnetic fields to trap gases of rubidium atoms and cool them to temperatures of about 50 billionths of a degree Kelvin, which is close to minus 460 degrees Fahrenheit. This temperature is about as close as scientists have ever been to reaching absolute zero, the hypothetical temperature at which all molecular activity ceases.

By first creating such a cold gas in their UA campus laboratory, and then lowering the temperature of the system just a little bit more, some atoms in the gas still behave much as they do in classical physics, bouncing around at random. However, this additional cooling induces a phase transition where other atoms of the gas become a new form of matter called a Bose-Einstein condensate, a tiny droplet of superfluid which behaves according to quantum physics.

Bose-Einstein condensates, or BECs, were first produced in Nobel Prize-winning experiments in 1995. Since then, theoretical and experimental researchers have studied BECs intensely, using BECs as valuable new tools for probing a wide range of fundamental physics. The UA experimental team, and the University of Queensland theoretical team headed by physicist Matthew Davis, paired up to push the limits of what is known about how BECs actually form.

"Scientists understand a lot more about BECs after over ten years of work, but there are still some great surprises," said Anderson.

Their work lends additional support to the idea that spontaneous "topological defect" formation in phase transitions is a widespread phenomenon, even at temperatures near absolute zero. "Defect" in this sense means that a discontinuity has appeared in the background superfluid of the BEC.

"In our experiments, we found that when we cool a very cold gas through the BEC phase transition, the BEC can spontaneously begin to rotate, creating something like a microscopic quantum mechanical hurricane where atoms rotate as a fluid around a vortex core where there is no fluid," Anderson said.

"The idea of spontaneous formation of vortices in BECs had been lightly discussed as theory before, but had not been observed in experiments," he added.

Ironically, showing that BECs could be spun up into a rotating state to form vortices was a hot research topic just a few years ago. Anderson was a postdoc on the team that was the first to create a vortex in a BEC. They used creative but relatively difficult techniques. Other groups have now used a variety of techniques to successfully create BECs with many vortices.

"What was so surprising about our work is that we saw these things just appear by themselves. You just make your condensate, and they sometimes appear. You don't have to somehow manipulate your system, all you have to do is cool through the phase transition."

" I think what we've done, for the first time, is link experimental observations of defect formation in a phase transition with a theoretical model and numerical simulations that are built on some pretty rigid foundations of quantum mechanics and quantum interactions," Anderson said.

"By collaborating with our colleagues in Australia, who are doing the theoretical research, we can back out details of the physical process that causes these vortices to spontaneously form. It will help us understand more about how superfluids develop, and perhaps more about universal phase transition dynamics in general, including the kind of phase transition that occurred in the early universe."

The experimental research was supported by grants from the National Science Foundation and the Army Research Office. The theoretical work was supported by the Australian Research Council and the University of Queensland.

The UA and University of Queensland science results agree with an important theoretical model called the "Kibble-Zurek mechanism" that concerns how defects can form in a phase transition. The model says that the faster a system undergoes a phase transition, the more defects -- in this case, the vortices -- naturally and spontaneously form. Conversely, the slower the system is cooled, the smoother the phase transition into a new state will be and the fewer defects will appear.

In the not-so-near future, Anderson said, BECs may become useful in devices in ways similar to laser light. Rotation sensors, accelerometers or interferometers based on the coherence properties of Bose-Einstein condensates are among the envisioned possible applications, he said.

But for now, perhaps most exciting use for BECs is as a tool for exploring the fundamental ideas of physics in ways that couldn't be explored before.

SCIENCE CONTACT:
Brian P. Anderson (520-626-5825; bpa@optics.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.optics.arizona.edu/anderson
http://www.arizona.edu

Further reports about: BEC Hurricanes Quantum Universe coldest gas magnetic field

More articles from Earth Sciences:

nachricht GPM sees deadly tornadic storms moving through US Southeast
01.12.2016 | NASA/Goddard Space Flight Center

nachricht Cyclic change within magma reservoirs significantly affects the explosivity of volcanic eruptions
30.11.2016 | Johannes Gutenberg-Universität Mainz

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>