Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UA Scientists Discover Quantum Mechanical 'Hurricanes' Form Spontaneously

16.10.2008
University of Arizona scientists experimenting with some of the coldest gases in the universe have discovered that when atoms in the gas get cold enough, they can spontaneously spin up into what might be described as quantum mechanical twisters or hurricanes.

The surprising experimental results agree with independent numerical simulations produced by collaborating scientists at the University of Queensland in Australia. The UA and Australian researchers are reporting the results of the research in Oct. 16 issue of the journal Nature.

The results are of great interest because they reveal something fundamentally new about certain kinds of "phase transitions," and nature is replete with phase transitions.

Common phase transitions include liquid water freezing to ice, or liquid water boiling to steam. Another common phase transition occurs in proteins when raw eggs are cooked. More exotic examples of phase transitions include the cooling of materials until they become superconductors, and, on the scale of the universe, the phase transition that transformed the early universe from a hot, dense system born from the Big Bang into the universe with protons, electrons, structure and forces observed today.

A group of UA scientists headed by optical sciences associate professor Brian P.
Anderson uses lasers and magnetic fields to trap gases of rubidium atoms and cool them to temperatures of about 50 billionths of a degree Kelvin, which is close to minus 460 degrees Fahrenheit. This temperature is about as close as scientists have ever been to reaching absolute zero, the hypothetical temperature at which all molecular activity ceases.

By first creating such a cold gas in their UA campus laboratory, and then lowering the temperature of the system just a little bit more, some atoms in the gas still behave much as they do in classical physics, bouncing around at random. However, this additional cooling induces a phase transition where other atoms of the gas become a new form of matter called a Bose-Einstein condensate, a tiny droplet of superfluid which behaves according to quantum physics.

Bose-Einstein condensates, or BECs, were first produced in Nobel Prize-winning experiments in 1995. Since then, theoretical and experimental researchers have studied BECs intensely, using BECs as valuable new tools for probing a wide range of fundamental physics. The UA experimental team, and the University of Queensland theoretical team headed by physicist Matthew Davis, paired up to push the limits of what is known about how BECs actually form.

"Scientists understand a lot more about BECs after over ten years of work, but there are still some great surprises," said Anderson.

Their work lends additional support to the idea that spontaneous "topological defect" formation in phase transitions is a widespread phenomenon, even at temperatures near absolute zero. "Defect" in this sense means that a discontinuity has appeared in the background superfluid of the BEC.

"In our experiments, we found that when we cool a very cold gas through the BEC phase transition, the BEC can spontaneously begin to rotate, creating something like a microscopic quantum mechanical hurricane where atoms rotate as a fluid around a vortex core where there is no fluid," Anderson said.

"The idea of spontaneous formation of vortices in BECs had been lightly discussed as theory before, but had not been observed in experiments," he added.

Ironically, showing that BECs could be spun up into a rotating state to form vortices was a hot research topic just a few years ago. Anderson was a postdoc on the team that was the first to create a vortex in a BEC. They used creative but relatively difficult techniques. Other groups have now used a variety of techniques to successfully create BECs with many vortices.

"What was so surprising about our work is that we saw these things just appear by themselves. You just make your condensate, and they sometimes appear. You don't have to somehow manipulate your system, all you have to do is cool through the phase transition."

" I think what we've done, for the first time, is link experimental observations of defect formation in a phase transition with a theoretical model and numerical simulations that are built on some pretty rigid foundations of quantum mechanics and quantum interactions," Anderson said.

"By collaborating with our colleagues in Australia, who are doing the theoretical research, we can back out details of the physical process that causes these vortices to spontaneously form. It will help us understand more about how superfluids develop, and perhaps more about universal phase transition dynamics in general, including the kind of phase transition that occurred in the early universe."

The experimental research was supported by grants from the National Science Foundation and the Army Research Office. The theoretical work was supported by the Australian Research Council and the University of Queensland.

The UA and University of Queensland science results agree with an important theoretical model called the "Kibble-Zurek mechanism" that concerns how defects can form in a phase transition. The model says that the faster a system undergoes a phase transition, the more defects -- in this case, the vortices -- naturally and spontaneously form. Conversely, the slower the system is cooled, the smoother the phase transition into a new state will be and the fewer defects will appear.

In the not-so-near future, Anderson said, BECs may become useful in devices in ways similar to laser light. Rotation sensors, accelerometers or interferometers based on the coherence properties of Bose-Einstein condensates are among the envisioned possible applications, he said.

But for now, perhaps most exciting use for BECs is as a tool for exploring the fundamental ideas of physics in ways that couldn't be explored before.

SCIENCE CONTACT:
Brian P. Anderson (520-626-5825; bpa@optics.arizona.edu)

Lori Stiles | University of Arizona
Further information:
http://www.optics.arizona.edu/anderson
http://www.arizona.edu

Further reports about: BEC Hurricanes Quantum Universe coldest gas magnetic field

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>