Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


U.S. West Coast erosion spiked in winter 2009-10, previewing likely future as climate changes

Knowing that the U.S. West Coast was battered during the winter before last by a climatic pattern expected more often in the future, scientists have now pieced together a San Diego-to-Seattle assessment of the damage wrought by that winter's extreme waves and higher- than-usual water levels.

Getting a better understanding of how the 2009-10 conditions tore away and reshaped shorelines will help coastal experts better predict future changes that may be in store for the Pacific coast, the researchers say.

"The stormy conditions of the 2009-10 El Nino winter eroded the beaches to often unprecedented levels at sites throughout California and vulnerable sites in the Pacific Northwest," said Patrick Barnard, a coastal geologist with the United States Geological Survey in Santa Cruz, Calif. In California, for example, winter wave energy was 20 percent above average for the years dating back to 1997, resulting in shoreline erosion that exceeded the average by 36 percent, he and his colleagues found.

Barnard's team published their results last Saturday, 9 July, in Geophysical Research Letters, a journal of the American Geophysical Union.

Among the most severe erosion was at Ocean Beach in San Francisco where the winter shoreline retreated 56 meters (184 feet), 75 percent more than the typical winter. The erosion resulted in the collapse of one lane of a major roadway and led to a 5 million dollar emergency remediation project. In the Pacific Northwest, the regional impacts were moderate, but the southerly shift in storm tracks, typical of El Nino winters, resulted in severe local wave impacts to the north-of- harbor mouths and tidal inlets. For example, north of the entrance to Willapa Bay along the Washington coast, 105 m (345 ft) of shoreline erosion during 2009-10 destroyed a road.

The beach erosion observed throughout the U.S. West Coast during the 2009-10 El Nino is linked to the El Nino Modoki ('pseudo' El Nino) phenomenon, where the warmer sea surface temperature is focused in the central equatorial Pacific (as opposed to the eastern Pacific during a classic El Nino). As a result of these conditions, the winter of 2009-10 was characterized by above average wave energy and ocean water levels along much of the West Coast, conditions not seen since the previous major El Nino (classic) in 1997-98, which contributed to the observed patterns of beach and inlet erosion.

As even warmer waters in the central Pacific are expected in the coming decades under many climate change scenarios, El Nino Modoki is projected to become a more dominant climate signal. When combined with still higher sea levels expected due to global warming, and potentially even stronger winter storms, these factors are likely to contribute to increased rates of beach and bluff erosion along much of the U.S. West Coast, producing regional, large-scale coastal changes.

The authors took advantage of up to 13 years of seasonal beach survey data along 238 kilometers

(148 miles) of coastline and tracked shoreline changes through a range of wave conditions.

"The impact of the 2009-10 El Nino Modoki on U.S. West Coast beaches"
Patrick L. Barnard: Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa Cruz, California, USA;

Jonathan Allan: Coastal Field Office, Oregon Department of Geology and Mineral Industries, Newport, Oregon, USA;

Jeff E. Hansen: Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa Cruz, California, USA; and Department of Earth and Planetary Sciences, University of California, Santa Cruz, California, USA;

George M. Kaminsky: Coastal Monitoring and Analysis Program, Washington State Department of Ecology, Olympia, Washington, USA;

Peter Ruggiero: Department of Geosciences, Oregon State University, Corvallis, Oregon, USA;

Andre Doria: Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.

Author contact:
Patrick Barnard, Tel. +1 (831) 427-4756,

Maria-Jose Vinas | American Geophysical Union
Further information:

More articles from Earth Sciences:

nachricht Oasis of life in the ice-covered central Arctic
24.10.2016 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht Receding glaciers in Bolivia leave communities at risk
20.10.2016 | European Geosciences Union

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Oasis of life in the ice-covered central Arctic

24.10.2016 | Earth Sciences

‘Farming’ bacteria to boost growth in the oceans

24.10.2016 | Life Sciences

Light-driven atomic rotations excite magnetic waves

24.10.2016 | Physics and Astronomy

More VideoLinks >>>