Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of C scientist offers better ways to engineer Earth's climate to prevent dangerous global warming

07.09.2010
There may be better ways to engineer the planet's climate to prevent dangerous global warming than mimicking volcanoes, a University of Calgary climate scientist says in two new studies.

"Releasing engineered nano-sized disks, or sulphuric acid in a condensable vapour above the Earth, are two novel approaches. These approaches offer advantages over simply putting sulphur dioxide gas into the atmosphere," says David Keith, a director in the Institute for Sustainable Energy, Environment and Economy and a Schulich School of Engineering professor.

Keith, a global leader in investigating this topic, says that geoengineering, or engineering the climate on a global scale, is an imperfect science.

"It cannot offset the risks that come from increased carbon dioxide in the atmosphere. If we don't halt man-made CO2 emissions, no amount of climate engineering can eliminate the problems – massive emissions reductions are still necessary."

Nevertheless, Keith believes that research on geoengineering technologies,their effectiveness and environmental impacts needs to be expanded.

"I think the stakes are simply too high at this point to think that ignorance is a good policy."

Keith suggests two novel geoengineering approaches–'levitating' engineered nano-particles, and the airborne release of sulphuric acid–in two newly published studies. One study was authored by Keith alone, and the other with scientists in Canada, the U.S. and Switzerland.

Scientists investigating geoengineering have so far looked mainly at injecting sulphur dioxide into the upper atmosphere. This approach imitates the way volcanoes create sulphuric acid aerosols, or sulphates, that will reflect solar radiation back into space – thereby cooling the planet's surface.

Keith says that sulphates are blunt instruments for climate engineering. It's very difficult to achieve the optimum distribution and size of the aerosols in the atmosphere to reflect the most solar radiation and get the maximum cooling benefit.

One advantage of using sulphates is that scientists have some understanding of their effects in the atmosphere because of emissions from volcanoes such as Mt. Pinatubo, he adds.

"A downside of both these new ideas is they would do something that nature has never seen before. It's easier to think of new ideas than to understand their effectiveness and environmental risks," says Keith.

In his study–published in the Proceedings of the National Academy of Sciences, a top-ranked international science journal–Keith describes a new class of engineered nano-particles that might be used to offset global warming more efficiently, and with fewer negative side effects, than using sulphates.

According to Keith, the distribution of engineered nano-particles above the Earth could be more controlled and less likely to harm the planet's protective ozone layer.

Sulphates also have unwanted side-effects, ranging from reducing the electricity output from certain solar power systems, to speeding up the chemical process that breaks down the ozone layer.

Engineered nano-particles could be designed as thin disks and built with electric or magnetic materials that would enable them to be levitated or oriented in the atmosphere to reflect the most solar radiation.

It may also be possible to control the position of particles above the Earth. In theory, the particles might be engineered to drift toward Earth's poles, to reduce solar radiation in polar regions and counter the melting of ice that speeds up polar warming–known as the ice-albedo feedback.

"Such an ability might be relevant in the event that warming triggers rapid deglaciation," Keith's study says.

"Engineered nano-particles would first need to be tested in laboratories, with only short-lived particles initially deployed in the atmosphere so any effects could be easily reversible," says Keith.

Research would also be needed to determine whether such nano-particles could be effectively distributed, given the complex interplay of forces in the atmosphere, and how much cooling might be achieved at the planet's surface.

It is also unknown whether the amount of particles needed–about 1 trillion kilograms per year or 10 million tonnes over 10 years–could be manufactured and deployed at a reasonable cost.

However, Keith notes another study, which looked at the cost of putting natural sulphates into the stratosphere.

"You could manipulate the Earth's climate at large scale for a cost that's of the order of $1 billion a year. It sounds like a lot of money, but compared to the costs of managing other environmental problems or climate change, that is peanuts."

"This is not an argument to do it, only an indication that risk, not cost, will be the deciding issue," he adds.

In a separate new study published in the journal Geophysical Research Letters, Keith and international scientists describe another geoengineering approach that may also offer advantages over injecting sulphur dioxide gas.

Releasing sulphuric acid, or another condensable vapour, from an aircraft would give better control of particle size. The study says this would reflect more solar radiation back into space, while using fewer particles overall and reducing unwanted heating in the lower stratosphere.

The study included computer modeling that showed that the sulphuric acid would quickly condense in a plume, forming smaller particles that would last longer in the stratosphere and be more effective in reflecting solar radiation than the large sulphates formed from sulphur dioxide gas.

Keith stresses that whether geoengineering technology is ever used, it shouldn't be seen as a reason not to reduce man-made greenhouse gas emissions now accumulating in the atmosphere.

"Seat belts reduce the risk of being injured in accidents. But having a seat belt doesn't mean you should drive drunk at 100 miles an hour," he says.

Hollie Roberts | EurekAlert!
Further information:
http://www.ucalgary.ca

More articles from Earth Sciences:

nachricht In times of climate change: What a lake’s colour can tell about its condition
21.09.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht Did marine sponges trigger the ‘Cambrian explosion’ through ‘ecosystem engineering’?
21.09.2017 | Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>