Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoon Nida's Cloud Tops Dropping as it Zigzags in Wind Shear

02.12.2009
Nida is battling to keep its typhoon strength in the Western Pacific Ocean as wind shear continues to tear at the storm and weaken it. NASA's CloudSat satellite noticed that Nida's cloud tops are not as high as they were over the weekend, and lower cloud tops mean less powerful thunderstorms.

Over the last few days, satellites have shown forecasters that Nida has zigzagged between 18 and 20 degrees North Latitude on its somewhat erratic northern track. It has moved west, then east, and now back in a westward direction on its general track north.

After a westward movement, Nida is expected to now travel to the west of the islands of Iwo To and Chichi Jima over the next several days.

On December 1 at 4 a.m. ET (0900 UTC), Nida was now a Category One typhoon, with maximum sustained winds near 86 mph (75 knots). Winds are still gusting near 100 mph near the center of the storm. The range for typhoon storm-force winds now extend to 45 miles from the center, while tropical storm-force winds extend up to 135 miles from the center.

Nida is located about 335 miles southwest of the island of Iwo To (formerly known as Iwo Jima), near 20.6 North and 137.3 East. Nida is still trudging along at a slow rate near 5 mph in a west-northwesterly direction, but is expected to move in a more westerly direction over the next couple of days before turning north.

NASA's Aqua satellite's Moderate Imaging Spectroradiometer (MODIS) instrument captured an image of Typhoon Nida on November 30 at 4:15 UTC. The image showed the eye is now cloud-filled, one sign of a weakening storm, and since that image, Nida had weakened from a Category Two Typhoon to a Category One storm.

Forecasters at the Joint Typhoon Warning Center noted that infrared imagery like that from NASA's Atmospheric Infrared Sounder on NASA's Aqua satellite, has shown that Nida's eye has degenerated. Satellite imagery also has shown that Nida is elongating in a southwest to northeast direction, a sign that the storm can't maintain its shape and strength. Satellite imagery has also shown that dry air is entering the system, and it will wick up moisture and weaken the storm further.

NASA's CloudSat satellite gives forecasters a unique look at tropical cyclones because its Cloud Profiling Radar basically "cuts a storm in half" and looks at it from the side. What CloudSat saw in the latest imagery was that Nida's cloud tops have dropped from over 9 miles high (15 kilometers) to around 8 miles (13 kilometers) high. Those dropping cloud heights indicate that Nida doesn't have the uplift, or strong convection that it had earlier, and that's also reflected in its slowing sustained winds. There were still some areas of cloud ice (indicating highest thunderstorm tops with strongest uplift), but the areas of heavy precipitation have diminished.

Nida is expected to re-curve northeast and become an extra-tropical low within 2 to 3 days.

Text credit: Rob Gutro, NASA/Goddard Space Flight Center

Rob Gutro | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/mission_pages/hurricanes/archives/2009/h2009_Nida.html

More articles from Earth Sciences:

nachricht Climate change weakens Walker circulation
20.10.2017 | MARUM - Zentrum für Marine Umweltwissenschaften an der Universität Bremen

nachricht Shallow soils promote savannas in South America
20.10.2017 | Senckenberg Forschungsinstitut und Naturmuseen

All articles from Earth Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>